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Abstract

The random coefficients logit model is widely used in choice analysis, empirical industrial
organization, and transport economics among other fields. Much recent work has gone into
relaxing distributional assumptions made about the random coefficients (RCs). Many objects of
interest in this model such as welfare measures, choice probabilities and their derivatives, can be
represented as functionals of the distribution of RCs, specifically averages. This paper provides
a nonparametric estimator of the RC distribution under which implied plug-in estimators of
such averages are asymptotically normal. This is the first formal limiting distribution result for
a nonparametric plug-in estimator of such functionals in the RC logit model. For the particular
functionals considered here, this asymptotic normality occurs at the parametric n−1/2 rate. A
consistent estimator of the variance of this limiting distribution is also provided. Together,
these results make consistent tests of hypotheses and valid confidence intervals possible in the
RC logit model when the distribution of RCs is estimated nonparametrically.
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1 Introduction

The random coefficients logit model, also called the mixed logit model, is widely used in choice
analysis, empirical industrial organization, and transport economics. In this model, consumers
choose from finitely many alternatives by maximizing utility functions that are linear in observed
covariates. Coefficients on a subset of these covariates are assumed to be random, allowing marginal
utilities to vary among observably similar individuals. Thus, random coefficients (henceforth RC or
RCs) represent unobserved heterogeneity in tastes associated with observed covariates. In applied
work, researchers are often interested in features (or functionals) of the unknown distribution of
RCs. These functionals can be important inputs in answering policy questions, for example the effect
on average consumer welfare of a proposed intervention. Most applications of the RC logit model
use parametric specifications of the RC distribution to estimate such functionals. This paper shows
how to carry out inference on functionals of the RC distribution when this distribution is estimated
nonparametrically. The main result here is asymptotic normality of estimates of these functionals.
For the class of functionals considered here, asymptotic normality occurs at the parametric n−1/2

rate. This asymptotic normality result can be used for hypothesis testing or for deriving confidence
intervals while retaining flexibility of the distribution of RCs.

In applied work, researchers are often interested in objects that that are averages against the
distribution of RCs or smooth functions of such averages. Examples that are exact averages include
choice probabilities conditional on covariates, (mean) willingness to pay for a product feature or
welfare measures such as consumer surplus and compensating variation. The price elasticity is an
example of a smooth function (ratio) of averages. Researchers may additionally be interested in
averaging over covariates — thereby integrating out both observed and unobserved heterogeneity.
This motivates the focus in this paper on averaging functionals which are quantities that can be
represented as averages over the distribution of RCs and possibly also the distribution of observed
covariates.

Most applications of the RC logit model are parametric, and normally or log-normally distributed
RCs are particularly popular. Parametric families impose a priori implicit restrictions on features
of interest. For example, for normally distributed RCs (and a number of other parametric families),
Daly et al. (2012) show that mean willingness to pay (Example 2.2 here) is undefined. Miravete
et al. (2022) show that Gaussian RCs limits the set of possible elasticities (and curvature values)
for the demand function. This in turn impacts conclusions drawn about the pass-through of taxes
on the consumer. Nonparametric estimation of the distribution of RCs provides greater flexibility
in terms of implied features of the model. Using nonparametric techniques for estimating the RC
distribution also eliminates a source of misspecification. These observations motivate the focus here
on nonparametric estimators for the distribution of RCs.

Relaxing parametric assumptions on RC distributions has been a topic of much interest in the
econometrics literature, but existing results are limited to identification, consistency or pointwise
asymptotic normality. Thus, they do not allow researchers to conduct inference on objects of interest.
For instance, in a binary choice model without the logit assumption, Gautier and Kitamura (2013)
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construct an estimator of the density of RCs that is (consistent and) pointwise asymptotically
normal. They do not provide provide limit distribution results for functionals of this density.1

For multinomial choice with a logit assumption, Train (2008), Train (2016), Fox et al. (2016) and
Heiss et al. (2022) consider a variety of possible nonparametric estimators for the distribution
of RCs. The last two papers also give consistency and convergence rate results. None of these
four papers derive asymptotic distributions, and hence, inference on functionals of interest is not
possible using their estimators. A key problem the proposed estimators in these four papers face
is an infinite-dimensional counterpart of the “parameters at the boundary” problem. Their choice
of parameter space is defined by a set of inequality constraints (probabilities are non-negative)
and an equality constraint (total mass equals one). Inequality constraints present a problem for
asymptotic normality since it is not known a priori whether they bind at the the true parameter
value. Equality constraints are always known to bind, and hence not problematic. Some details and
relevant references are provided in the section on related literature.

The main contribution of this paper is an asymptotic normality result for estimates of averaging
functionals using a nonparametric estimator of the distribution of RCs. This is provided in the con-
text of discrete choice data at the level of the decision maker — that is, consumer level choice data is
assumed. The RC logit model used here allows RCs on some covariates and non-random coefficients
on remaining covariates. Such random/non-random coefficient breakdowns are commonplace in ap-
plied work. Covariates are assumed to be exogenous so that the nonparametric point identification
results of Fox et al. (2012) apply. The distribution of RCs is restricted to be continuous so that it
so that it admits a density. This density is not restricted to a finite-dimensional parametric family,
but is instead estimated using nonparametric sieve maximum likelihood. The sieves considered here
are linear approximation spaces for the square root of the density. The square root transformation
is important in establishing asymptotic normality. It avoids the infinite-dimensional counterpart
of a “parameter at the boundary problem” since the implied density is automatically non-negative,
and the only remaining constraint is the equality constraint that a density should integrate to one.
In addition, the square-root transformation facilitates appropriate differentiability properties for
both the likelihood and the functionals of interest. The plug-in estimator of averaging functionals
based on this sieve estimator is shown to be asymptotically normal at the parametric n−1/2 rate
under regularity conditions. A consistent data-based estimator of the limit variance is provided.
Combining the asymptotic normality and consistent variance estimation results gives tractable and
consistent hypothesis tests and confidence intervals for functionals of interest. In the setting of con-
sumer level nonparametric RC logit models, this is the first result on asymptotically valid inference
for functionals.

The nonparametric RC density estimator in this paper is subject to the curse of dimensionality;
allowing for more RCs slows down its rate of convergence. I show that the curse can be mitigated
by assuming that individual RCs are independent. In this case, the estimator enjoys the one-

1. Pointwise asymptotic normality of an estimated function, such as a density or a conditional mean, does not imply
asymptotic normality of implied plug-in estimators of functionals. See Bickel and Ritov (2003) for a counterexample
and related discussion.
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dimensional rate of convergence, i.e. the rate with a single RC in the model. The intuition is similar
to that for dimension reduction in nonparametric additive models. Independence assumptions of
this sort are commonplace in applied work using parametric specifications of the distribution of
RCs.

The utility of the method in this paper is illustrated through an empirical application on the
value of a statistical life (VSL) in Sierra Leone. This empirical application is inspired by León and
Miguel (2017) and uses their dataset with the nonparametric approach of the present paper. The
key finding is a higher VSL estimate, leading to higher estimates of the benefit due solely to reduced
mortality risk of a large public infrastructure project in Sierra Leone. The 95% confidence intervals
around this higher nonparametric VSL estimate (and the implied infrastructure investment benefit)
do not contain the original VSL estimate in León and Miguel (2017).

1.1 Related literature

The parametric RC logit model can be traced back to Boyd and Mellman (1980) and Cardell and
Dunbar (1980); both papers used it to study the U.S. automobile market with aggregate data, i.e.
outcome variables were market shares. A number of subsequent papers use the parametric RC logit
model with consumer level data (henceforth micro data); for example Train et al. (1987) studied the
residential telephone service market. Textbook treatments of the parametric RC logit model can be
found in Train (2009, Chapter 6) and Hensher et al. (2015, Chapter 15). Examples of applications
and survey papers include Small et al. (2005), León and Miguel (2017), Hensher and Greene (2003)
and Keane and Wasi (2013). In terms of parametric statistical inference, under some regularity
conditions (see Lee (1992), Hajivassiliou and Ruud (1994) and Lee (1995)) standard tools as can be
found in Newey and McFadden (1994) apply. Horowitz and Nesheim (2021) provides an extension
to inference with high-dimensional covariates under sparsity using penalized maximum likelihood
and the adaptive-LASSO. The present paper contributes to this literature by providing a method
for conducting consistent inference on objects of interest while using a nonparametric estimator of
the RC distribution.

There is a recent growing econometrics literature on RC discrete choice models with nonpara-
metric treatment of the distribution of RCs. Papers on nonparametric point identification include
Fox et al. (2012) and Allen and Rehbeck (2023) for static discrete choice models and Bunting (2022)
for a dynamic model. Previously mentioned papers on nonparametric estimation are: Gautier and
Kitamura (2013), Train (2008), Train (2016), Fox et al. (2016) and Heiss et al. (2022). In this
literature, limit distribution theory for functionals of the RC distribution remains unexplored and
this is the primary contribution of the present paper.

The fixed-grid discrete distribution sieve estimator of Bajari et al. (2007) has been used in
several applied papers — examples are Nevo et al. (2016), Blundell et al. (2020) and Illanes and
Padi (2021). Fox et al. (2016) provides consistency theory and convergence rates for this class of
estimators in nonparametric discrete choice RC models including but not limited to the RC logit.
The applied papers mentioned use discrete choice RC models, but without the logit assumption. Of
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these, Nevo et al. (2016) and Blundell et al. (2020) use bootstrap methods to get standard errors for
inference. They do not prove bootstrap consistency, and I have not found any proofs of bootstrap
consistency using fixed-grid estimators in the broader literature. I also have not found any results
on limit distribution theory using fixed-grid estimators. An issue that fixed-grid estimators have to
contend with is the “parameters at the boundary” problem — see Fox et al. (2011)2 for discussion
specific to fixed-grid estimators and Geyer (1994) and Andrews (1999) for treatments of general
theory around this phenomenon. In addition to creating a hurdle for asymptotic normality, the true
parameter being a boundary point of the parameter space typically renders bootstrap procedures
inconsistent — see Andrews (2000) and Fang and Santos (2018). The approach used here does
not run into the boundary problem and it may be possible to generalize this approach to similar
non-logit settings. Exploration of this possibility is left to future research.

An issue commonplace in practice that is not addressed in this paper is endogeneity. In para-
metric RC logit models, the workhorse approach under endogeneity using aggregate data is that
of Berry (1994) and Berry et al. (1995) (henceforth BLP95). There are also extensions of BLP95
to micro data, for example Berry et al. (2004), Goolsbee and Petrin (2004), Grieco et al. (2023).
A few recent papers have explored nonparametric generalizations of BLP95 in the aggregate data
context: Compiani (2022), Lu et al. (2023) and Wang (2022). Of these, the first two provide infer-
ence results. Nonparametric inference on functionals in micro data demand models in the presence
of endogeneity is unexplored, to my knowledge. It may be possible to combine the approach in
the present paper with approaches from parametric micro data demand models with endogeneity.
Examples of such approaches are two-step likelihood methods (as in Goolsbee and Petrin (2004))
or control functions (as in Petrin and Train (2010)). The possibility of combining results here with
these alternate approaches involving instruments is left to future research.

1.2 Structure of the rest of the paper

The remainder of the paper is organized as follows. Section 2 presents the RC logit model in
Section 2.1, the functionals of interest in Section 2.2 and discussion of the choice of square root
transformation of the density in Section 2.3. Section 3 describes the plug-in estimation procedure.
Section 4 is divided into four subsections. Section 4.1 treats consistency and convergence rates
for the sieve estimator for model primitives. The main asymptotic normality result is provided in
Section 4.2. Results on mitigating the curse of dimensionality via independence assumptions on
the RCs are in Section 4.3. Throughout all of these, point identification of model primitives is
maintained as a high-level assumption. Section 4.4 presents the lower level sufficient conditions of
Fox et al. (2012) for point identification. Section 5 illustrates the finite sample performance of the
estimator in Monte Carlo simulations. Section 6 presents results from the empirical application on
the value of a statistical life in Sierra Leone. Section 7 concludes.

2. Specifically, see the paragraphs including and following footnotes 7 and 8 in Section 6 of Fox et al. (2011)
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2 Setup

2.1 The random coefficients logit model

Consider a population of decision makers (DMs) each making a single choice from a finite set of
mutually exclusive and exhaustive alternatives: Y = {0, . . . , J} with J ∈ N. The observed choice,
Y , is determined through (indirect) utility maximization:

Y = argmax
y∈Y

{
W ′

yα0 +X ′
yβ + εy

}
. (1)

For each y ∈ Y, Wy and Xy are observed covariates of respective dimensions dW and dX . They can
contain variables specific to the alternative, the DM or both. Variables in Wy are associated with
non-random coefficients (NRCs) α0 to be estimated. Variables in Xy are associated with unobserved
random coefficients (RCs) β whose distribution F0 is to be estimated. Such non-random/random
decompositions of the coefficients are commonplace in practice. Finally, εy is an unobserved idiosyn-
cratic additive error.3 Stack the covariates so that W ′ = (W ′

0, . . . ,W
′
J) and X ′ = (X ′

0, . . . , X
′
J).

The joint distribution of (W,X), denoted G0, is also unknown. The researcher has a sample of n
i.i.d. observations, {Yi,Wi, Xi}ni=1 from the distribution of (Y,W,X).

The following restrictions produce a random coefficients logit model from (1):

(i) independently across y ∈ Y, εy has a standard Gumbel distribution,

(ii) (ε0, . . . , εJ) ⊥⊥ (W,X, β),

(iii) β ⊥⊥ (W,X).

These restrictions and (1) imply that conditional choice probability for an alternative given only
observable covariates are:

P0(y, w, x) := Pr(Y = y|W = w,X = x) =

∫
κ (y, w, x;α0, b)F0(db),

where κ(y, w, x;α, b) =
exp

(
w′
yα+ x′yb

)
∑J

j=0 exp
(
w′
jα+ x′jb

) . (2)

The model unknowns are: the true NRCs α0, the distribution of RCs F0 and the distribution of
observed covariates G0.

2.2 The averaging functional: definition and examples

The objects of interest in this paper are averaging functionals; these are defined as having the form

τ0 =

∫ {∫
t (w, x;α0, b)F0(db)

}
G(dw,dx), (3)

3. The RCs β and the utility shock εy are unobserved by the econometrician. The individual DM knows the values
of utilities in (1).
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for a fixed, known and possibly vector-valued function t(·). Many quantities of economic interest
have the representation (3) or are smooth transformations thereof.

Example 2.1 (Welfare changes). An intervention, for example a tax or an innovation, will change
prices and/or the number of available alternatives. The researcher is interested in the resulting
compensating variation. Denote values before and after the intervention by (·)pre and (·)post re-
spectively. Small and Rosen (1981) show that under the logit assumption, individual compensating
variation conditional on (W,X, β) is given by a “log-sum-exp” formula,

tcv (W,X;α0, β) =
1

πprice (α0, β)

{
log
(∑Jpost

y=0 exp
(
W ′

post,yα0 +X ′
post,yβ

))
− log

(∑Jpre
y=0 exp

(
W ′

pre,yα0 +X ′
pre,yβ

))}
,

where πprice(·) returns the coefficient in (α0, β) associated with price. Taking the expectation of
tCV(W,X;α, β) with respect to (W,X, β) gives average compensating variation,

τcv,0 =

∫ {∫
tcv(w, x;α, b)F0(db)

}
G(dw,dx).

Remark 2.1 (On the pre/post subscripts in Example 2.1). When data from both before and after
an intervention are available, the subscripts (·)pre and (·)post can be taken to mean sample splits. If
the intervention has not yet happened, the (·)post values can be predicted values determined by an
economic model.

Example 2.2 (Mean marginal willingness to pay). Let l ∈ {1, . . . , dW + dX} be the index of a
non-price covariate and πl(α, b) denote the corresponding coefficient. Let πprice(α, b) denote the
coefficient on price. Since coefficients measure marginal indirect utilities, the coefficient ratio

twtp (W,X;α0, β) = tWTP (α0, β) =
πl (α0, β)

πprice (α0, β)

is a measure of marginal willingness to pay for feature l — see for instance Train and Weeks (2005).
Integrating out (W,X, β) amounts to only integrating out β since there are no covariates on the right
hand side of the above display. The associated averaging functional is mean marginal willingness to
pay for feature l

τwtp,0 =

∫
πl (α0, b)

πprice (α0, b)
F0(db).

Example 2.3 (Choice probabilities conditional on covariates, their derivatives and elasticities). Let
(w∗, x∗) be a fixed point of evaluation in the support of the stacked covariates (W,X) and let y ∈ Y
be any alternative. Individual choice probabilities conditional on (W,X) = (w∗, x∗) are

τccp,0 = P0 (y, w∗, x∗) =

∫
κ (y, w∗, x∗;α0, b)F0(db),

with κ(·) as in (2). Now, stack alternative specific covariates as z′j = (w′
j , x

′
j). The derivative of the
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choice probability for alternative y at (w∗, x∗) with respect to a feature zj,l for alternative j is the
averaging functional

τdccp,0 =
∂

∂zj,l
P0 (y, w∗, x∗) =

∫
∂

∂zj,l
κ (y, w∗, x∗;α0, b)F0(db).

Derivatives can be with respect to features of the same alternative (j = y) or a distinct one (j ̸= y).
The logit assumption provides convenient closed forms for the integrand ∂

∂zj,l
κ. An elasticity is

accommodated as a smooth transformation (ratio) of τccp and τdccp:

τelasticity,0 = zj,l,∗ ·
∂

∂zj,l
P0 (y, w∗, x∗)

P0 (y, w∗, x∗)
= zj,l,∗ ·

τdccp,0
τccp,0

.

Example 2.4 (Average marginal effects). For a fixed alternative y ∈ Y, and a feature zj,l of
(possibly the same) alternative j ∈ Y, the average marginal effect is

τame,0 =

∫ ∫
∂

∂zj,l
κ (y, w, x;α0, b)F0(db) G(dw,dx).

τame,0 integrates the derivative of κ(·) over covariates and RCs. In contrast, τdccp,0 in Example 2.3
fixes values of the covariates and integrates out only the RCs.

Remark 2.2. The averaging functional (3) is allowed to integrate over two sources of heterogeneity,
the RCs β and covariates (W,X), and has an additional unknown: the NRCS α0. As Examples 2.2
and 2.3 show, one or two of these can be dropped when the integrand t(w, x, α, b) is constant in
some of its arguments. Thus averaging functionals cover the NRCs α0 and moments of β through
appropriate choice of t(·).

2.3 Some precursors to estimation

In this paper, the approach to estimation of (3) will be to first estimate α0 and F0 from the data
and replace them whereever they appear with respective estimates. Similarly, G0 will be replaced
by the empirical distribution of covariates, so that expectations against G0 become sample averages.

The approach to estimation of F0 will be nonparametric. This means that the set of restrictions
imposed on this distribution will not imply that it is restricted to a finite-dimensional parametric
family. Estimation of F0 requires specifying a support for the RCs β. Assumption 2.1 below specifies
a compactness restrictions on this support required by the theory in Section 4.

Assumption 2.1. The set B ⊆ RdX is a Cartesian product of dX compact intervals, each with
non-empty interior. That is, there are known −∞ < β

l
< βl < ∞ (l ∈ {1, . . . , dX}) such that

B =
∏dX

l=1

[
β
l
, βl

]
. The true support of β, support (F0), is contained in B.

The specified set B must contain the true support, but exact knowledge of this support is not
required. Compactness of B is necessitated by the lower level sufficient conditions for the main
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identification assumption (Assumption 2.2 below), as well as the asymptotic results in Section 4.
See Remark A.1 in the appendix for a discussion. Henceforth, integration with respect to the RCs
will always be over B so that

∫
g(b)db ≡

∫
B g(b)db.

The nonparametric approach taken in this paper will be to approximate a transformation of F0

and use the data to estimate the best approximation. This is known as the method of sieves. For
simplicity, suppose finite dimensional linear approximations are used, so that

a transformtion of F0 ≈ γ1ψ1 + · · ·+ γKψK ,

where ≈ indicates that this is an approximation and not an exact expression. The ψk above are
functions that are required to approximate the transformation above to within any level of precision
if their number, K, is sufficiently large. For example, one can choose to use the c.d.f. associated with
F0 as the transformation and approximate this c.d.f using a finite linear combination of discrete
c.d.f’s.4 Another option is to use the density as the transformation of F0 (assuming it has a
Lebesgue density) and use a finite linear combination of trigonometric functions or polynomials
as the approximating functions.5 For both these choices, a key issue will be a problem known
as “parameters at the boundary”. The set of c.d.f’s and densities are defined by (i) an equality
constraint: the mass assigned to B must equal one and (ii) a set of inequality constraints: at any
point in B both of these objects must take non-negative values. Inequality constraints pose a problem
for asymptotic distribution theory since it is not known a priori whether they bind at the true value.
In the finite-dimensional case, this is reflected in the limit distribution of estimators: a Gaussian
limiting distribution occurs when inequality constraints do not bind at the true value, whereas a
non-Gaussian limit is obtained when inequality constraints do bind. Equality constraints are always
known to bind and hence, do not pose a problem — in the finite-dimensional case, a Gaussian limit
distribution is achieved when only equality constraints are present. See for example Geyer (1994)
and Andrews (1999) for details. In infinite dimensions, this problem does not disappear.

For the remainder of this paper, F0 will be assumed to have a Lebesgue density. There are
transformations of the density under which non-negativity, the source of the problem, is not an
issue. One can take the square-root of the density or the logarithm and estimate approximations to
these.6 Then, only the equality constraint remains, since the implied density must still integrate to
one. In the present paper, the transformation used will be the square-root density. Since the square
root is not uniquely defined (one can use both −

√
a and

√
a for a ≥ 0), this transformation creates

a uniqueness problem. The uniqueness problem however, is not difficult to handle.

4. Linear combinations of discrete c.d.f’s can approximate any c.d.f: this fact is implied by Theorem 15.10 of
Aliprantis and Border (2006) for example.

5. Polynomials and trigonometric functions are universal approximators for a number of function classes. As
a result of the Stone-Weierstrass Theorem, one of these function classes is L1, the set of all Lebesgue integrable
functions. Since densities integrate to 1, they are automatically members of L1.

6. These are not new ideas in the nonparametric estimation literature. See Gallant and Nychka (1987), Chen
et al. (2006) and Bierens (2014) for examples of the square-root as the chosen transformation. For the logarithm of
the density, there are a number of papers on “log-spline” estimation — see for example Stone (1990) and references
therein.
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For a function h such that
∫
h(b)2db = 1, denote

P (y, w, x;α, h) =

∫
κ(y, w, x;α, b)h(b)2db,

where κ(y, w, x;α, b) =
exp

(
w′
yα+ x′yb

)
∑J

j=0 exp
(
w′
jα+ x′jb

) . (4)

The condition
∫
h(b)2db = 1 means that h(·)2 is a density function since h(·)2 ≥ 0. Let h0 be

the true value of h so that h20 is the density of F0. To ensure h0 is unique, it will be restricted
to be non-negative: h0(·) ≥ 0. This restriction is used only to define the true value and will
not be imposed during estimation. The true conditional choice probabilities in (2) then satisfy
P0(y, w, x) ≡ P (y, w, x;α0, h0). Thus, (4) expresses the model in terms of the key unknowns, α, h.
The object of interest, the averaging functional in (3) can also be similarly represented:

τ(α, h,G) =

∫ {∫
t(w, x;α, b)h(b)2 db

}
G(dw,dx), (5)

with true value τ0 = τ (α0, h0, G0). Point identification of the pair (α0, h0) will be assumed through-
out in Assumption 2.2 below.

Assumption 2.2. Let A × H be the set of candidates for (α0, h0). The pair (α0, h0) is point
identified relative to A×H: for any (α, h) ∈ A×H,

if P (y, w, x;α, h) = P0(y, w, x) for every y ∈ Y almost surely with respect to G0,

then α = α0 and h2 = h20 almost everywhere.

Lower level sufficient conditions for Assumption 2.2 exist in the literature, for example those of
Fox et al. (2012). The sufficient conditions of Fox et al. (2012) for Assumption 2.2 are presented in
Section 4.4. The parameter set in Assumption 2.2 is a product of A ⊆ RdW and a set of functions,
H, that produce densities upon squaring. Additional restrictions will be placed on both these sets
in Section 4. H will nonetheless be a nonparametric (i.e. infinite-dimensional) family; it will not be
parametrized by a subset of finite-dimensional Euclidean space.

3 The plug-in estimator

A plug-in estimator of τ0 is formed by substituting estimators α̂n, ĥn, Ĝn of α0, h0, G0 into (5).
The estimator Ĝn of the distribution of observed covariates in this paper will be the empirical
distribution Ĝn(A) := (1/n)

∑n
i=1 I {(Wi, Xi) ∈ A}. Then, given α̂n and ĥn, the plug-in estimator

is a sample average

τ̂n = τ
(
α̂n, ĥn, Ĝn

)
=

1

n

n∑
i=1

∫
t (Wi, Xi; α̂n, b) ĥn(b)

2 db. (6)
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The main result in this paper can be summarized as follows. When the estimators α̂n and ĥn are
formed using a sieve maximum likelihood procedure to be described, there is a consistent data-based
variance estimator V̂τ,n for τ̂n such that

√
n (τ̂n − τ0)√

V̂τ,n

d→ N (0, 1) as n→ ∞,

under some regularity conditions. The formal statement of this result is Theorem 4.3. The variance
estimator V̂τ,n can be written as the sample variance of estimated influence functions, see (18).
Given estimates α̂n and ĥn, τ̂n can be computed as follows:

1. Compute
∫
t (Wi, Xi; α̂n, b) ĥn(b)

2 db for each observation i using numerical integration.

2. Take the sample average.

The numerical integration method in the first step can be polynomial-based or Monte Carlo.
The estimation procedure for (α0, h0) will be sieve maximum likelihood. The sample average

log-likelihood function is

ℓn(α, h) :=
1

n

n∑
i=1

logP (Yi,Wi, Xi;α, h) =
1

n

n∑
i=1

log

∫
κ (Yi,Wi, Xi;α, b)h(b)

2db.

The model primitives (α0, h0) will be estimated by maximizing ℓn over a sequence of approximating
sets A×Hn (sieves): (

α̂n, ĥn

)
= argmax

(α,h)∈A×Hn

ℓn(α, h). (7)

Linear approximations will be used for elements of H:

Hn =
{
γ′ψKn(·) : γ ∈ Γn

}
,

where ψKn(·)′ = (ψ1,Kn(·), . . . , ψKn,Kn(·)) is a vector of Kn approximating basis functions defined
on B, γ is a vector of coefficients constrained to Γn ⊆ RKn . In practice, I propose using splines
(piecewise polynomials) for ψKn , but other approximating bases can also be used — see Section 4
for theoretical restrictions.

The set Γn is defined by two constraints. First, elements of Hn must produce densities upon
squaring. Second, Hn must satisfy the same smoothness restrictions as those imposed on H in
Section 4. Taken together, γ ∈ Γn if and only if

γ′
[∫

ψKn(b)ψKn(b)
′db

]
γ = 1, (8)

γ′

 ∑
0≤|s|≤s

∫
[DsψKn(b)] [D

sψKn(b)]
′ db

 γ ≤ C2. (9)
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Equation (8) expresses “squaring produces a density” as a quadratic equality constraint. The
quadratic form in (9) is a measure of smoothness of the linear combination γ′ψKn . The vec-
tor s′ = (s1, . . . , sdX ) of non-negative integers specifies coordinate-wise partial derivative orders.
Ds = ∂|s|/

∏dX
l=1 ∂b

sl
l is the corresponding partial derivative with total order |s| :=

∑dX
l=1 sl. Section

4 provides additional restrictions on the order, s, of partial derivatives required and the constant
C in the quadratic inequality constraint (9). The program (7) is equivalent to first solving the
constrained optimization problem

(α̂n, γ̂n) = argmax
(α,γ)∈A×Γn

1

n

n∑
i=1

log

∫
κ (Yi,Wi, Xi;α, b)

(
γ′ψKn(b)

)2
db, (10)

and then setting ĥn = γ̂′nψKn . With α̂n and ĥn so defined, the plug-in estimator τ̂n in (6) can be
implemented. The full set of steps to get τ̂n are described in Algorithm 1 below.

Algorithm 1: Plug-in estimation routine for τ̂n in (6)
Input: sample {Yi,Wi, Xi}ni=1, support B for densities, basis functions ψKn (and length of

basis Kn), smoothness level s > dX/2 and constraint upper bound C > 1 for (9), a
numerical integration rule

Result: τ̂n in (6).
1 Solve (10) to get (α̂n, γ̂n);
2 Set ĥn = γ̂′nψKn ;
3 if τ(·) in (5) requires sample averaging then
4 Compute

∫
t (Wi, Xi; α̂n, b) ĥn(b)

2 db for each observation i using numerical integration;
5 Set τ̂n equal to the sample average of the above integrals;
6 else
7 Compute τ̂n =

∫
t (α̂n, b) ĥn(b)

2 db using numerical integration;

4 Theoretical results

This section presents theoretical results. Consistency and convergence rates for the sieve MLE for
model primitives are in Section 4.1. These are forerunners to the main asymptotic normality result
in Section 4.2 as can be seen from Algorithm 1. Results on mitigating the curse of dimensionality
are in Section 4.3. Throughout, Assumptions 2.1 and 2.2 are maintained. Sufficient conditions for
Assumption 2.2 from Fox et al. (2012) are presented in Section 4.4.

4.1 Consistency and convergence rates for model primitives

The estimator (α̂n, ĥn) is a maximum likelihood estimator. Lemma 4.1 below shows that identifica-
tion in Assumption 2.2 is sufficient to ensure that the target, (α0, h0), must be the unique maximizer
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of the expected log-likelihood:

ℓ∗(α, h) = E [logP (Y,W,X;α, h)] =

∫  J∑
y=0

P0 (y, w, x) logP (y, w, x;α, h)

G0(dw,dx).

Lemma 4.1. Suppose Assumptions 2.1 and 2.2 hold. Then

ℓ∗ (α0, h0) ≥ ℓ∗(α, h) with equality only if α = α0 and h2 = h20 almost everywhere.

Lemma 4.1 is well known and follows from a conditional variant of the information inequality.
A proof is provided for completeness. For estimation, the researcher must specify a domain B for
the basis functions ψKn . The following two assumptions restrict the parameter set A for α0 and
the set B used as the domain for functions in H.

Assumption 4.1. A ⊆ RdW is compact and has a non-empty interior. Furthermore, α0 ∈ int(A).

Assumption 4.2. The distribution, G0, satisfies the following exponential moment condition

∫
exp

8MA

J∑
j=0

∥wj∥2 + 8MB

J∑
j=0

∥xj∥2

G0(dw,dx) <∞,

where MA = supα∈A ∥α∥2 and MA = supb∈B ∥b∥2.

The exponential moment condition (4.2) in Assumption 4.2 is used to ensure that choice prob-
abilities P (·) in (4) do not get too close to zero. In particular, this condition ensures that the
logarithm of choice probabilities used to define the log-likelihood has finite moments. This helps
with proofs of consistency and convergence rates.

As before, for a multi-index, s = (s1, . . . , sdX ) ∈ ZdX
+ , let |s| =

∑dX
l=1 sl and Ds = ∂|s|/

∏dX
l=1 ∂b

sl
l .

I use the convention D0h ≡ h. For s ∈ N, and s-times differentiable h, the (s, 2)-Sobolev norm is

∥h∥s,2 =

 ∑
0≤|s|≤s

∫ ∣∣∣D|s|h(b)
∣∣∣2 db

1/2

.

The (s, 2)-Sobolev space is Ws,2(B) = {h : ∥h∥s,2 <∞}. For 0 < C < ∞, the (s, 2)-Sobolev closed
ball of radius C is Ws,2(B, C) = {h : ∥h∥s,2 ≤ C}.

Assumption 4.3. For some 1 < C <∞ and s > dX/2, H is the intersection of Ws,2(B, C) and the
unit sphere in L2, i.e. H =

{
h ∈ Ws,2(B, C) :

∫
h(b)2db = 1

}
. In addition, ∥h0∥s,2 < C.

An important consequence of Assumption 4.3 is that H is a subset of a smoothness class for which
there are well-established approximation error rates for common basis functions. An additional
useful consequence is that H is L2-compact — see Theorem 2 of Freyberger and Masten (2019).
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Assumption 4.4. For each K ∈ N, ψ′
K = (ψ1,K , . . . , ψK,K) is a vector of K functions on B which

satisfy the following.

(i) The components of ψK are orthonormal, i.e. for every k1, k2 ∈ {1, . . . ,K},

∫
ψk1,K(b) · ψk2,K(b)db =

1 if k1 = k2,

0 if k1 ̸= k2.

(ii) For s > dX/2 and any h ∈ Ws,2(B), there exists Ch > 0 such that

lim sup
K→∞

(
Ks/dX · inf

γ∈RK

√∫
(h(b)− γ′ψK(b))2 db

)
≤ Ch.

Assumption 4.5. Let C and s be as in Assumption 4.3, ψK be basis functions satisfying Assump-
tion 4.4 and let {Kn} be a sequence of basis dimensions. Then Hn = {γ′ψKn : γ ∈ Γn}, where

Γn =

γ ∈ RKn : γ′γ = 1, and γ′

 ∑
0≤|s|≤s

∫
[DsψKn(b)] [D

sψKn(b)]
′ db

 γ ≤ C2

 .

Assumption 4.4 restricts the basis functions ψK to be used in estimation. Assumption 4.4 (i)
is an orthonormality restriction that is not stringent; it can be ensured by conducting the Gram-
Schmidt procedure. Assumption 4.4 (ii) is the most important and requires that ψKn provide
approximation rates that are at least as good as K−s/dX

n . For linear approximation, this is the best
known rate and can be guaranteed by polynomial splines of degree s − 1 with K + 1 − s knots —
see Birman and Solomjak (1967) or Dahmen et al. (1980). Chen (2007) provides conditions under
which Assumption 4.4 (ii) can be guaranteed by other classes of basis functions such as Fourier
series, orthogonal polynomials and wavelets.

Assumption 4.5 defines the sieve spaces Hn. The quadratic equality constraint in the definition
of Γn enforces production of a density upon squaring the linear approximation. The subsequent
quadratic inequality imposes ∥γ′ψKn∥s,2 ≤ C, mirroring restriction (4.3) on H in Hn.

Theorem 4.1 (Consistency). Suppose Assumptions 2.1, 2.2 and 4.1-4.5 hold. Suppose also that
Kn → ∞ and Kn

n → 0 as n→ ∞. Then, the sieve MLE in (7) satisfies

∥α̂n − α0∥22 +
∫ (

|ĥn(b)| − h0(b)
)2

db = op(1). (11)

The corresponding density estimator is also consistent in the L1 norm:∫ ∣∣∣ĥn(b)2 − h0(b)
2
∣∣∣db = op(1). (12)

Theorem 4.1 establishes consistency of the sieve MLE in (11). Distances in A×H are measured
by combining the Euclidean norm for A and the L2-norm on H. The absolute value around ĥn
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accounts for the fact that the sign of ĥn is inconsequential. L1-consistency of the corresponding
density estimator is established in (12); this follows from (11) and the fact that L1 distance between
densities is bounded above by twice the L2 distance between their square roots. The proof of
Theorem 4.1 verifies the regularity conditions of Proposition 10 of Freyberger and Masten (2019).
The key ingredients in applying their result are Lemma 4.1, a compactification argument for H
and a uniform weak law of large numbers of the form supθ∈A×Hn

|ℓn(α, h)− ℓ∗(α, h)|
p→ 0. The

last requirement is established using empirical process arguments. The L1-consistency of densities,
(14), implies consistency of the associated distribution functions in the Lévy-Prohorov metric. This
latter metric is used by Fox et al. (2016) for showing consistency of fixed-grid estimators. Hence,
the consistency results in Theorem 4.1 are comparable to theirs.

Theorem 4.2 (Convergence Rate). Suppose Assumptions 2.1, 2.2 and 4.1-4.5 hold. Suppose also
that Kn → ∞ and Kn√

n
→ 0 as n→ ∞. Then, the sieve MLE in (7) satisfies

{
∥α̂n − α0∥22 +

∫ (
|ĥn(b)| − h0(b)

)2
db

} 1
2

= Op

(
max

{
K−s/dX

n ,

√
Kn

n

})
. (13)

The corresponding density estimator converges in L1 at the same rate:

∫ ∣∣∣ĥn(b)2 − h0(b)
2
∣∣∣db = Op

(
max

{
K−s/dX

n ,

√
Kn

n

})
. (14)

Theorem 4.2 shows that error in estimation of α0 and h0 consists of two components: a deter-
ministic “bias” term with decay rate K−s/dX

n and a “standard deviation” (or “variance”) term with
decay rate

√
Kn/n. The “bias” term arises because the linear approximation is never exact; this

approximation error is controlled by Assumption 4.4 (ii). The variance term arises from random
sampling error in estimating approximating coefficients. The convergence rate (13) is established
using Theorem 3.2 in Chen (2007). The key technical step uses empirical process tools to charac-
terizes an upper bound on the modulus of continuity of the centered empirical process indexed by
log-likelihoods. Finally, the rate for the density (14) follows from the rate for its square root (13)
by the same arguments in the discussion for Theorem 4.1.

The rate result in (13) characterizes what growth rate of Kn relative to sample size n gives an
optimal rate of convergence for the sieve MLE. These are:

Kn = K0n
dX

2s+dX and
{
∥α̂n − α0∥22 +

∫ (
|ĥn(b)| − h0(b)

)2
db

} 1
2

= Op

(
n
− s

2s+dX

)
(15)

where K0 > 0 is a positive fixed constant. The optimal rate comes from a familiar bias-variance
tradeoff: choosing a larger Kn reduces the bias term but increases the variance term. The optimal
choice of Kn makes each of these grow at the same rate. The optimal L1 convergence rate for
associated densities is also (15) due to (14). The optimal rate in (15) is the standard nonparametric
optimal rate when the underlying primitives are s-smooth in the Sobolev sense.
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4.2 Asymptotic normality for the plug-in estimator of averaging functionals

Recall that the true value of the averaging functional (5) and the plugin estimator (6) are:

τ0 =

∫ ∫
t (w, x;α0, b)h0(b)

2 db G0(dw,dx),

τ̂n =
1

n

n∑
i=1

∫
t (Wi, Xi; α̂n, b) ĥn(b)

2 db.

This subsection will treat asymptotic normality of τ̂n − τ0 upon scaling. I first state two additional
regularity conditions. Then, I state the asymptotic normality result in studentized form with a
data-based variance estimator. This collects two results into one; the separate claims of asymptotic
normality with a “population limit variance” and consistent variance estimation are proven in the
appendix. Discussion of the result is provided after its statement.

Assumption 4.6. There is a function of covariates T (w, x) with 0 <
∫
T
2
dG0 <∞, such that for

every α1, α2 ∈ A and b1, b2 ∈ B,

|t (w, x;α1, b1)− t (w, x;α2, b2)| ≤ T (w, x)
(
∥α1 − α2∥22 + ∥b1 − b2∥22

)1/2
.

Furthermore, there is a pair
(
α, b
)
∈ A× B for which

∫
t
(
w, x;α, b

)2
G0(dw,dx) <∞.

Assumption 4.7. For each (w, x, b), t(w, x;α, b) is twice continuously differentiable in α and its
derivatives satisfy the integrability conditions:∫

sup
α∈A,b∈B

∥∥∥∥ ∂∂αt(w, x;α, b)
∥∥∥∥
2

G0(dw,dx) < ∞,

and
∫

sup
α∈A,b∈B

∥∥∥∥ ∂2

∂α∂α′ t(w, x;α, b)

∥∥∥∥
2

G0(dw,dx) < ∞.

In addition to the assumptions listed above, asymptotic normality requires controlling the be-
havior of the Hessian of the log-likelihood in certain neighborhoods of the true value (α0, h0). The
notion of a gradient and Hessian in infinite dimensions, and the particular neighborhoods of (α0, h0)

all require additional definitions. Furthermore, the nature of uniform control of the behavior of this
infinite dimensional Hessian requires an additional assumption. The requisite definitions are col-
lected in Appendix C.3 and the additional assumption is stated in Assumption C.1.

Theorem 4.3. Suppose Assumptions 2.1, 2.2 and 4.1-4.7 and C.1 all hold. Assume further as
n→ ∞, Kn → ∞, Kn√

n
→ 0 and

√
n ·K−s/dX

n → 0. Then, for the variance estimator V̂τ,n defined in
(18) below, √

n · (τ̂n − τ0)√
V̂τ,n

d→ N (0, 1). (16)

Furthermore, there is Vτ ∈ (0,∞) such that V̂τ,n
p→ Vτ .
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Theorem 4.3 shows asymptotic standard normality of the studentized statistic in (16). Further-
more, the subsequent result that V̂τ,n = V̂τ,n

p→ Vτ ∈ (0,∞) shows that τ̂n is a n−1/2-consistent
estimator of τ0. Thus, averaging functionals can be estimated at the usual parametric rate. The
additional condition that

√
n ·K−s/dX

n → 0 is an undersmoothing condition since it requires Kn to
grow faster than the optimal one in (15). The undersmoothing condition prevents approximation
error from appearing in the limit distribution as a bias term.

The variance estimator V̂τ,n to be described involves accounting for two sources of estimation
error in τ̂n − τ0. One is from estimating the model primitives, the other is from sample averaging
to estimate G0. To see this, first define the following:

T1(α, b) =

∫
t(w, x;α, b)G0(dw,dx),

T2,0(w, x) =

∫
t (w, x;α0, b)h0(b)

2db,

T̂2,n(w, x) =

∫
t (w, x; α̂n, b) ĥn(b)

2db.

(17)

Let µn[g] := (1/n)
∑n

i=1 {g (Yi,Wi, Xi)− E [g(Y,W,X)]} denote the centered empirical process.
The difference between the plug-in estimator and the true value is

τ̂n − τ0 = R1,n +R2,n +R3,n,

where R1,n =

∫
T1 (α̂n, b) ĥn(b)

2db−
∫
T1 (α0, b)h0(b)

2db,

R2,n = µn [T2,0] =
1

n

n∑
i=1

{T2,0 (Wi, Xi)− E [T2,0(W,X)]} ,

R3,n = µn

[
T̂2,n − T2,0

]
.

The third term is a negligible remainder — Assumptions 4.1, 2.1 and 4.6 imply a Donsker property
sufficient for

√
n · R3,n = op(1). The second term R2,n captures error due to sample averaging to

estimate G0.
√
n ·R2,n is asymptotically normal by the usual central limit theorem. R1,n captures

error from estimating (α0, h0) if G0 were known. The key to establishing (16) is showing that
√
n ·R1,n is asymptotically normal.

Shen (1997), Chen et al. (2014) and Chen and Liao (2014) show that under some regularity
conditions, an analogy to the usual “CLT + Delta Method” argument for parametric models ex-
tends to functionals of sieve estimators. In particular, functional derivatives (or rather their Riesz
representers) replace Delta Method gradients. Assumptions 4.6 and 4.7 and the quadratic structure
of τ(·) help to ensure that these functional derivatives are bounded in an appropriate sense. In
particular, a sufficient condition for a mapping of the form h 7→

∫
T (b)h(b)2db to be “smooth” in

the sense of having a derivative operator at h0 that is a continuous (or equivalently a bounded)
linear operator is for uniform boundedness of

∫
T (b)2h(b)2db in a L2-ball around h0. For a rigorous

statement and proof of this smoothness property of the mean mapping h 7→
∫
T (b)h(b)2db, see for
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example Proposition A.5.2 in Bickel et al. (1998). Combining the Delta Method analogy with the
additional term due to averaging, the variance estimator V̂τ,n in (16) is:

V̂τ,n =
1

n

n∑
i=1

(
T̃1,n (Yi,Wi, Xi) + T̃2,n (Wi, Xi)

)2
. (18)

In (18), the term T̃1,n captures estimation error due to estimating α̂n and ĥn, whereas T̃2,n captures
estimation error due to sample averaging. These can be defined as follows: with T̂2,n in (17),

T̃1,n(y, w, x) = λ̂′
nη̂n(y, w, x),

T̃2,n(w, x) = T̂2,n(w, x)−
1

n

n∑
i=1

T̂2,n (Wi, Xi) ,

and

η̂n(y, w, x) =
1

P
(
y, w, x; θ̂n

) [ ∫ ∂
∂ακ (y, w, x; α̂n, b) ĥn(b)

2 db

2
∫
κ (y, w, x; α̂n, b) ĥn(b)ψKn(b)db

]
,

λ̂n =

[
1

n

n∑
i=1

η̂n (Yi,Wi, Xi) η̂n (Yi,Wi, Xi)
′

]−1

× 1

n

n∑
i=1

( ∫
∂
∂α t (Wi, Xi; α̂n, b) ĥn(b)

2 db

2
∫
t (Wi, Xi; α̂n, b) ĥn(b)ψKn(b) db

)
.

(19)

Importantly, all of the above elements defining V̂τ,n in (18) can be computed from the data.

4.3 Mitigating the curse of dimensionality through independence

In Theorem 4.2, the dimension dX of the covariates with random coefficients slows down the rate
of convergence. Specifically, the bias term in (13) is of order K−s/dX

n . A way to mitigate this curse
will be through an independence assumption on the distribution of random coefficients stated below
in Assumption 4.8.

Assumption 4.8. Let l = 1, . . . , dX index components of the random coefficients β. The coefficients
in β are mutually independent, so that the density h20 is a product, h0(b)2 =

∏dX
l=1 h0,l (bl)

2. for
each b′ = (b1, . . . , bdX ).

Assumption 4.8 motivates using a product of univariate linear series approximations:

ĥn(b) =

dX∏
l=1

γ̂′n,lψKn,l (bl) . (20)

The same number of terms, Kn, is used for each dimension l; this makes the statement of the
result simpler, but is not strictly necessary. Each univariate basis ψKn,l must satisfy the univariate
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counterpart of Assumption 4.4 for every l ∈ {1, . . . , dX}. The approximation coefficient estimates
γ̂n,l are derived from (10).

Theorem 4.4 (Convergence Rate with Independent Random Coefficients). Suppose Assumptions
2.2, 2.1, 4.1-4.5 and 4.8 all hold. Let ĥn now be defined by (20) and s > 1/2 in 4.3. Assume further
that the sieve dimension Kn is chosen to ensure Kn → ∞ and Kn

n → 0. Then,

{
∥α̂n − α0∥22 +

∫ (
|ĥn(b)| − h0(b)

)2} 1
2

= Op

(
max

{
K−s

n ,

√
Kn

n

})
. (21)

The corresponding density estimator converges in L1 norm at the same rate:

∫ ∣∣∣ĥn(b)2 − f0(b)
∣∣∣ db = Op

(
max

{
K−s

n ,

√
Kn

n

})
.

To compare (21) and (13), note that if we use Kn terms in the original sieve, we get K−s/dX
n

for the bias term without the independence restriction, whereas we get K−s
n for the bias term with

the independence restriction which is considerably smaller. The variance terms stay the same (up
to dimension-dependent positive multiplicative constants). The optimal rate with independence is
also different: the optimal choice of Kn and the resulting optimal rate for θ̂n are now

Kn = K0n
1

2s+1 and
{
∥α̂n − α0∥22 +

∫ (
|ĥn(b)| − h0(b)

)2
db

} 1
2

= Op

(
n−

s
2s+1

)
, (22)

where again K0 > 0 is a positive fixed constant. Therefore, we get the one-dimensional rate of
convergence in both (21)-(22) regardless of what the actual dimension dX is. In addition, the one-
dimensional rate of convergence also affects the undersmoothing condition for asymptotic normality,
as will be shown in Theorem 4.5 below.

Theorem 4.5. Suppose Assumptions 2.2, 2.1, 4.1-4.8 and C.1 all hold. Assume further that the
sieve dimension Kn is chosen to ensure that as n→ ∞, Kn → ∞, Kn√

n
→ 0 and

√
n ·K−s

n → 0. Let

V̂τ,n be as in (18). Then, √
n · (τ̂n − τ0)√

V̂τ,n

d→ N (0, 1). (23)

4.4 Sufficient conditions for point identification of model primitives

Assumption 2.2 maintains nonparametric point identification of (α0, h0) as a high-level assumption
to be maintained throughout. In this subsection, I present and briefly discuss the nonparamet-
ric identification result proven in Fox et al. (2012) providing lower level sufficient conditions for
Assumption 2.2.

Assumption 4.9. The support of the covariates with RCs, X, contains a non-empty open set.
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Assumption 4.10. Suppose dW > 0. Then there are two distinct alternatives y1, y2 ∈ Y and a
point c ∈ RdX such that (c′, c′)′ is a point of support of

(
X ′

y1 , X
′
y2

)′. That is, c is a support point
of Xy1 and Xy2 jointly. Furthermore, the matrix

E
[
(Wy1 −Wy2) (Wy1 −Wy2)

′ |Xy1 = c,Xy2 = c
]

has finite components and is non-singular.

Lemma 4.2 (Point identification). Suppose Assumption 2.1 holds. Then Assumptions 4.9 and 4.10
imply Assumption 2.2.

Proof of Lemma 4.2. This result is a combination of Theorems 4 and 15 of Fox et al. (2012).

Assumption 4.9 restricts covariates associated with RCs by ruling out purely discrete covariates
as well as interactions between continuous covariates.7

If α0 does not enter the estimation problem, i.e. dW = 0, Assumption 4.9 is the only requirement
for point identification of h0. This is the content of Theorem 4 in Fox et al. (2012). Assumption 4.10
provides conditions under which α0 can be identified separately to h0 when α0 needs to be estimated
(i.e. dW > 0). Once α0 is separately identified, it can be treated as known and then Assumption 4.9
identifies h0.

While Assumptions 4.9 and 4.10 may be strong, the Fox et al. (2012) identification result is the
most general one I am aware of for the present setting. Should future identification results arise
that incorporate discrete covariates with RCs or interactions between continuous ones with RCs,
the results in previous subsections 4.1-4.3 will remain valid. This is because beyond being sufficient
conditions for Assumption 2.2, these lower-level assumptions play no role in subsequent asymptotic
results.

5 Simulations

5.1 Setup

In this section, the finite sample performance of the plugin estimator τ̂n and its variance estimator
V̂τ,n is inspected in Monte Carlo simulations. There are J = 4 available alternatives. Sample sizes
considered are n = 500, 1000, 2000, 4000. The covariates Wi and Xi are independent, with dW = 5

and dX = 2. The vector of covariates with NRCs, Wi, has mutually independent components, each
generated from a uniform discrete distribution with mass points at {0.2, 0.4, 0.6, 0.8, 1}. This is done
to match the empirical application in Section 6. The vector of covariates with RCs, Xi also has
mutually independent components, each generated from a truncated standard normal distribution,
truncated to have support in the interval [−2, 2]. The NRCs are set to α0 = (2, 1, 2, 1, 2). Two
candidates are considered for F0, the distribution of RCs:

7. If at least one component of X is an interaction between two or more of its other components, there is a surface
of dimension at most J · dX − 1 to which the distribution of X assigns probability 1. A lower dimensional surface of
a given Euclidean space always has empty interior.
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1. F0 is a product of two cosine distributions. Letting β = (β1, β2), β1 ⊥⊥ β2, β1 ∼ Cosine(5, 5)

and β2 ∼ Cosine(−6, 5).8

2. F0 is a truncated mixture of bivariate normal distributions. In particular,

F0 = 0.5 · N

([
7.5

−2.5

]
,Σβ

)
+ 0.5 · N

([
2.5

−7.5

]
,Σβ

)
truncated to [0, 10]× [−11,−1]

where

Σβ =

[
0.50 −0.15

−0.15 0.50

]

For an observation i in the sample, a vector of RCs βi is drawn from F0 and a choice Yi from
{1, . . . , 4} is generated according to (1). Observations are i.i.d. across i = 1, . . . , n. Each dataset is
replicated 10,000 times.

Four examples of τ0 in (5), the functionals of interest, are considered. These are:

1. The first component of the NRCs, α0,1 = 2.

2. The mean of the first component of the RCs, E [β1]

3. The mean willingness to pay (Example 2.2), E [WTP] = E [β1/β2].

4. The mean maximum utility, averaged over both RCs and covariates (W,X). This is:

τ0,max.util. = E [Max Util.] ≡ E

log
 J∑

j=1

exp
(
W ′

ijα0 +X ′
ijβi
) . (24)

During estimation one has to choose the support B. I inspect two cases: (i) the support is
correctly specified, and (ii) B is strictly larger than the true support. In the first case, the support
is B = [0, 10]× [−11,−1]. In the second, I set B = [0, 13]× [−13.5,−0.5] which is 69% larger than
the true support in terms of area.

5.2 Computational details

For the sieve maximum likelihood problem (10), I use polynomial splines with evenly spaced knots.
These are piecewise polynomials that are of fixed order on an evenly spaced partition of B. The
boundaries of these partition pieces are called “knots”. I use cubic splines, so that on any given
piece of B, the estimate ĥn is a cubic polynomial. Splines are not orthonormal (they do not satisfy
Assumption 4.4 (i) by default), and so I orthonormalize them before estimation. Since the function
being estimated is bivariate, I use a two-fold tensor product of univariate splines to create bivariate

8. A Cosine(µ, s) distribution is supported on [µ− s, µ+ s] and has its mean (and mode) at µ. The density of this
distribution is the cosine function raised to be non-negative.
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orthonormal splines. For details on tensor product spaces, see Chen (2007, p. 5573). Cubic splines
correspond to s = 3. The undersmoothing condition then reads

√
n ·K−3/dX

n → 0 as n→ ∞. I use
a deterministic rule of Kn ≈ n0.45 to satisfy this condition – in particular, I choose

Kn = (smallest integer greater than n0.225)2. (25)

This choice satisfies the undersmoothing condition.9 All integrals against random coefficients are
computed using Gauss-Legendre quadrature (a deterministic numerical integration method).

The objective function in (10) is highly non-convex and hence optimization requires some care.
In particular, most local gradient based algorithms are not guaranteed to find the optimum. I use
the nlopt library for non-linear constrained optimization. This library implements both local and
global optimization algorithms. For (10), I first use a global branch-and-bound optimization routine
that conducts a global search by splitting the domain of α, γ into a number of pieces and doing
derivative-based search within each piece. Upon finding a global maximum, I “polish” the optimum
by doing a local search using output from the previous step as a starting point.10 This “polishing”
is a recommended step in the nlopt documentation for global routines.

5.3 Results

Tables 1–4 show the results of 10000 Monte Carlo simulations. Tables 1 and 2 show results when
the distribution of RCs is triangular. These tables report coverage probabilities of 95% confidence
intervals constructed using the nonparametric procedure. In addition, bias, standard deviation and
root mean squared error are reported, each

√
n-scaled. When the true support is correctly specified,

across the various functionals of interest, as the sample size grows, we find that bias decreases after
scaling by

√
n, and the sampling variance stays stable after

√
n-scaling. Coverage probabilities

are also quite close to the nominal 95% level. When B is larger than the true support, the bias is
considerably larger. This is because over the regions of the support where the true density is zero, the
estimated density can be positive, which in turn biases estimates of functionals. The performance
of the plug-in estimator therefore suffers relative to the case of correct support specification. As the
sample size grows, coverage does improve, but does so quite slowly due to the larger bias.

Tables 3 and 4 show results when the distribution of RCs is a mixture of normals. As before, with
a correct support specification, bias decays quickly and coverage is quite good. With an incorrect
support specification, the bias is considerably higher than the case with correct specification, and
coverage similarly suffers. The mixture of normals is a more difficult distribution to approximate for
the splines than the cosine distribution since it is multimodal. This explains the slower improvements
in bias, which in turn explains the slower improvements in coverage rates. Both tables 2 and 4
highlight the sensitivity of the method to the specification of the support. This is not particularly
surprising since even deterministic approximation error can be shown to be significantly higher when

9. With s = 3 and dX = 2 and Kn ≈ n0.45, we have K
−3/2
n = n−0.675 and so, since 0.675 > 0.5, it follows that√

nK
−s/dX
n → 0 for Kn ≈ n0.45.

10. The specific global and local algorithms used are StoGo and L-BFGS respectively.
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B is larger than the true support in both cases. It may be possible to make the support itself an
object of estimation by introducing additional (finite-dimensional) parameters through a location
and scale transformation. The asymptotic theory will be quite different and is left to future research.

Param. n Kn
√
n· Bias

√
n· Std. Dev.

√
n· RMSE Cover. Prob.

α0,1

500 36 0.0247 0.2953 0.2964 0.9312
1000 49 0.0211 0.2853 0.2861 0.9385
2000 81 0.0122 0.2806 0.2807 0.9436
4000 100 0.0077 0.2781 0.2782 0.9476

E [β1]

500 36 0.0536 0.4593 0.4624 0.9275
1000 49 0.0669 0.4491 0.4540 0.9321
2000 81 0.0406 0.4442 0.4461 0.9414
4000 100 0.0376 0.4413 0.4429 0.9459

E [WTP]

500 36 0.0031 0.0463 0.0464 0.9375
1000 49 0.0024 0.0403 0.0404 0.9404
2000 81 0.0027 0.0373 0.0374 0.9407
4000 100 0.0012 0.0358 0.0358 0.9485

E [Max Util.]

500 36 0.1091 0.6729 0.6817 0.9304
1000 49 0.1197 0.6625 0.6733 0.9286
2000 81 0.0832 0.6587 0.6639 0.9459
4000 100 0.0791 0.6555 0.6603 0.9471

Table 1: Monte Carlo results from 10000 simulations with F0 equal to a product of cosine distribu-
tions and correct support specification. Coverage probabilities are for 95% confidence intervals.
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Param. n Kn
√
n· Bias

√
n· Std. Dev.

√
n· RMSE Cover. Prob.

α0,1

500 36 0.0710 0.3533 0.3604 0.9003
1000 49 0.0371 0.3436 0.3456 0.9212
2000 81 0.0359 0.3385 0.3404 0.9252
4000 100 0.0236 0.3359 0.3367 0.9378

E [β1]

500 36 0.1254 0.6084 0.6212 0.9126
1000 49 0.1491 0.5985 0.6168 0.9102
2000 81 0.1246 0.5938 0.6067 0.9133
4000 100 0.0934 0.5918 0.5991 0.9258

E [WTP]

500 36 0.0110 0.0485 0.0497 0.8788
1000 49 0.0048 0.0424 0.0426 0.9258
2000 81 0.0046 0.0394 0.0397 0.9287
4000 100 0.0040 0.0379 0.0381 0.9351

E [Max Util.]

500 36 0.2188 0.8203 0.8490 0.9056
1000 49 0.1489 0.8105 0.8240 0.9231
2000 81 0.1141 0.8063 0.8143 0.9340
4000 100 0.0822 0.8039 0.8081 0.9436

Table 2: Monte Carlo results from 10000 simulations with F0 equal to a product of cosine distribu-
tions and B larger than true support. Coverage probabilities are for 95% confidence intervals.
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Param. n Kn
√
n· Bias

√
n· Std. Dev.

√
n· RMSE Cover. Prob.

α0,1

500 36 0.0272 0.3019 0.3032 0.9322
1000 49 0.0381 0.2923 0.2947 0.9295
2000 81 0.0276 0.2878 0.2891 0.9344
4000 100 0.0098 0.2847 0.2848 0.9478

E [β1]

500 36 0.0973 0.5053 0.5146 0.9211
1000 49 0.0864 0.4964 0.5038 0.9255
2000 81 0.0594 0.4899 0.4935 0.9381
4000 100 0.0446 0.4879 0.4899 0.9477

E [WTP]

500 36 0.0045 0.0488 0.0490 0.9372
1000 49 0.0046 0.0449 0.0450 0.9340
2000 81 0.0034 0.0429 0.0429 0.9434
4000 100 0.0024 0.0418 0.0418 0.9478

E [Max Util.]

500 36 0.1581 0.7584 0.7746 0.9282
1000 49 0.1424 0.7464 0.7598 0.9303
2000 81 0.1116 0.7428 0.7511 0.9379
4000 100 0.0668 0.7401 0.7431 0.9481

Table 3: Monte Carlo results from 10000 simulations with F0 equal to a mixture of normal distri-
butions and correct support specification. Coverage probabilities are for 95% confidence intervals.
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Param. n Kn
√
n· Bias

√
n· Std. Dev.

√
n· RMSE Cover. Prob.

α0,1

500 36 0.1084 0.3637 0.3796 0.8241
1000 49 0.1067 0.3538 0.3695 0.8614
2000 81 0.0672 0.3485 0.3549 0.9021
4000 100 0.0391 0.3469 0.3491 0.9263

E [β1]

500 36 -0.3394 0.7068 0.7841 0.8045
1000 49 -0.1816 0.6974 0.7207 0.8886
2000 81 -0.1349 0.6915 0.6924 0.9133
4000 100 -0.0641 0.6893 0.6901 0.9388

E [WTP]

500 36 0.0148 0.0508 0.0529 0.8869
1000 49 0.0162 0.0467 0.0495 0.8751
2000 81 0.0118 0.0448 0.0463 0.9094
4000 100 0.0080 0.0438 0.0445 0.9155

E [Max Util.]

500 36 0.2822 1.0622 1.0991 0.8567
1000 49 0.2809 1.0532 1.0900 0.8592
2000 81 0.1840 1.0470 1.0631 0.9055
4000 100 0.1336 1.0444 1.0529 0.9355

Table 4: Monte Carlo results from 10000 simulations with F0 equal to a product of mixture of
normal distributions and B larger than true support. Coverage probabilities are for 95% confidence
intervals.

6 Empirical Application

In this section, an illustration of the use of the nonparametric estimation routine and the associated
plugin procedure is provided. In public policy decisions on investment in infrastructure investments
to improve safety, cost-benefit analyses are often conducted to see whether the cost of implementa-
tion is justified by society’s willingness to pay for reductions in mortality risk. This exercise requires
estimates of this willingness to pay for mortality risk reduction, which termed the value of a statis-
tical life (or VSL). For example, in assessing road safety investments, the California Department of
Transport uses a VSL of US$2.7 million. In developing nations, demand for public infrastructure
investments is high, but reliable VSL estimates are scarce.

León and Miguel (2017) exploit a particular transportation scenario to estimate VSL among
middle and upper class travellers travelling to and from the international aiport to the capital city
in Sierra Leone. Travellers going to and from Sierra Leone by air have to cross an estuary that is
16 kilometers across at its widest point and have four alternatives available to make this journey.11

The four alternatives are: ferry, helicopter, hovercraft or watertaxi. These alternatives vary in
terms of historical accident risk, trip duration and monetary cost. Every alternative has non-zero

11. León and Miguel (2017) report that the best available ground transport going around this estuary involves a six
hour journey on potentially dangerous roads, and that they have no reports of travelers ever choosing that option.

26



fatal accident risk and these risks are widely reported and well known to travellers. In terms of
mortality risk, these rank, in increasing order of the probability of fatal accident: water taxi (safest),
hovercraft, ferry, helicopter (most dangerous). Travellers’ choices among these alternatives reveal
the tradeoffs they are willing to make between mortality risk and the cost of travel. The marginal
rate of substitution in this trade off is the VSL.

León and Miguel (2017) use a survey of 561 travellers from 2012 to estimate mean VSL through
a parametric RC logit model (1) and (2). Two covariates have RCs in their analysis: the probability
of trip completion (or mortality risk) and the opportunity cost of transport (monetary cost and
travel time). The negative of the ratio of the mortality risk coefficient to the cost coefficient is the
VSL, since this ratio is the aforementioned marginal rate of substitution. In addition, there are five
covariates with NRCs, which are quality rankings for five attributes of each alternative: comfort of
seats, noise level, crowdedness, location convenience and quality of clientele. In their specification,
the RCs follow independent triangular distributions with some sign restrictions. The support of
the RC on probability of trip completion is restricted to be non-negative, and the support of the
RC on travel cost is restricted to be non-positive. Together, the parametric assumptions and these
additional restrictions give them 7 parameters to estimate: the means of the two RCs and the five
NRCs.

I use the nonparametric procedure described in the present paper to estimate mean VSL and
compare results to estimates from a parametric estimation procedure. For each individual in the
dataset used by León and Miguel (2017), there is information on multiple (up to five) trips. I
extract survey results on the most recent choice situation faced by a given individual in the dataset
to create a cross-section of the overall dataset. The resulting dataset contains 561 individuals like the
original one. For parametric estimation, I use simulated maximum likelihood estimation (SMLE)
with the independent triangular distribution parametrization used by León and Miguel (2017). For
parametric estimation, 1024 simulation draws per individual are used to compute the log-likelihood
and its derivatives. For nonparametric estimation, I use (orthonormalized) bivariate cubic splines
as basis functions as described in Section 5. The support is specified by enlargening the support
of the triangular distribution estimated in the parametric case. In particular, for the coefficient on
mortality risk, the support is roughly [0, 20] and I extend this to [0, 25]. For the coefficient on cost,
the support is roughly [−0.032, 0.0] and I extend this to [−0.05, 0]. For integration, Gauss-Legendre
(product) quadrature is used.

Table 5 shows the results from both estimation routines. Comparing the parametric and non-
parametric estimates of mean RCs and NRCs, we see that these parameters are quite close. Com-
paring the main object of interest for policy questions however, the mean VSL, we see that we
get very different estimates and confidence intervals. The parametric mean VSL of US$832,229 is
substantially smaller than the nonparametric estimate of US$1,192,271. The associated confidence
intervals are [US$513,482, US$1,150,975] for the parametric case and [US$838,801, US$1,545,741]
for the nonparametric case. Now, while there is one-sided overlap, neither confidence interval con-
tains the mean VSL estimate from the other routine. That is, the nonparametric confidence interval
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Figure 1: Density contour plots. The left panel shows the estimated triangular distribution from
parametric SMLE and the right panel shows the estimated nonparametric density.

does not contain the parametric estimate, and vice versa. The difference in these two estimates arise
because the parametric routine ignores dependence structures between the two random coefficients.
Figure 1 plots the contours of the two estimated densities. Visual inspection of the nonparametric
density plot shows a multimodal density with concentrations of high mortality risk avoidance pref-
erences coupled with lower marginal utilities for money. In contrast, by construction, the product
of independent triangular distributions imply no changes in the distribution of preferences for one
attribute given preferences for the other. Here, the nonparametric density is unrestricted, and so,
it was entirely possible for much lower VSL estimates than the parametric case to have occured.

León and Miguel (2017) use their parametric VSL estimate of US$597,749 to characterize the
benefit due solely to improved traveller safety of an new international airport located 40km outside of
Freetown. This was a real infrastructure project under public consideration and would have allowed
travellers to drive to the capital city from the new airport (and vice versa), thereby removing the
need for water or air transport over the estuary. The cost of this project was initially estimated
at US$312 million, and was criticized under the claims that the economic benefits of the airport
do not justify the cost. Under conservative assumptions12 about the reduction in mortality risk
generated by eliminating the trip across the estuary, the net present value estimated by León and
Miguel (2017) due solely to mortality risk reduction was approximately US$60 million, roughly one
fifth of the cost. The parametric estimate reported in the present paper brings this up to US$83.5
million. The nonparametric estimate reported in the present paper produces a higher estimate of
US$119.7 million. The parametric estimate in the present paper shows that mortality risk reduction
accounts for about a quarter of the cost of building the airport whereas the nonparametric estimate
brings this closer to four tenths. These do not account for the other benefits of the airport such as

12. The two conservative assumptions are that (i) ground transport will be only as safe as the safest existing
transport mode across the estuary, the water taxi, and (ii) the flow business travel to and from Sierra Leone will
remain constant. For (i), the road is likely safer and hence this provides a conservative starting point. For (ii), there
was documented rapid increase in business travel to Sierra Leone over the years before the publication of León and
Miguel (2017), and hence, flow of travel remaining constant is a conservative assumption. The reader is referred to
the policy exercise in León and Miguel (2017, pp. 225–226) for exact details on the remaining calculations.
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predicted growth in international trade and economic growth.

Remark 6.1 (Higher VSL estimates). The parametric estimate of mean VSL reported here is
higher than the original US$597,749 estimate of León and Miguel (2017). This original estimate
is computed by simulating from the estimated triangular distributions. With two independent
restricted triangular distributions (each with 0 at the boundary of support), the mean of the ratio
is available in closed form: it is the ratio of the means multiplied by a factor of 2 · log 2. Using
this closed form expression with the mean coefficient estimates in León and Miguel (2017), an
alternative estimate would instead be 1000 × (10.155/0.019) × 2 × log 2, which gives US$740,938.
Thus, the simulated estimate in León and Miguel (2017), while unbiased, under-reports mean VSL
due to simulation error. The parametric estimate in this paper is higher still, but the parametric
confidence interval reported in the previous paragraph contains both the simulated US$597,749
estimate and the closed form US$740,938 estimate.

Parameter Covariate Parametric SMLE Nonparametric

Mean RC

Pr(trip completion) 9.9193 11.9453
(1.3318) (1.5188)

Transport Cost -0.0165 -0.02127
(0.0013) (0.0009)

NRC

Ranking: Comfort of seats 0.1569 0.1211
(0.2462) (0.2533)

Ranking: Noise level 0.1461 0.1525
(0.2695) (0.2729)

Ranking: Crowdedness -0.8669 -0.7142
(0.2459) (0.2517)

Ranking: Convenient location -0.2768 -0.1613
(0.2101) (0.2091)

Ranking: Quality of clientele -0.3414 -0.3459
(0.2788) (0.2706)

Mean VSL
— 832.2292 1192.2713

(162.6257) (180.3421)

Table 5: Estimation results based on the León and Miguel (2017) dataset. The column “Parametric
SMLE” reports parametric estimates from simulated maximum likelihood using 1024 simulation
draws. The column “Nonparametric” reports nonparametric estimates using the method in this
paper. The number of basis functions used was set to Kn = 36. For parametric mean VSL,
standard errors are calculated using the parametric Delta Method.
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7 Conclusion

This paper studied the question of inference in the random coefficients logit model when the distri-
bution of RCs is estimated nonparametrically. The focus was conducting inference on functionals
of the RC distribution that are averages against the distribution of RCs. Many objects of economic
interest in the RC logit model can be represented as such functionals. The paper provides a non-
parametric estimator of the distribution of RCs under which plug-in estimators of these functionals
is asymptotically normal. Under regularity conditions, this asymptotic normality occurs at the
parametric n−

1
2 -rate. A consistent estimator of the asymptotic variance of this limiting distribution

is provided. Together, these results researchers to provide consistent confidence intervals and tests
of hypotheses for the functionals of interest while using a flexible nonparametric procedure to esti-
mate the distribution of RCs. Theoretical results are confirmed through simulations. An empirical
example about the value of a statistical life in Sierra Leone is used to illustrate the relevance of this
method.
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Appendix for “Nonparametric inference for a class of
functionals in the random coefficients logit model”

This appendix presents proofs of the results in the main text. Throughout, all probabilities are
defined on a probability space (Ω,F ,Pr) assumed to be rich enough to support all random variables
defined in the main text and subsequently.

A Additional remarks on assumptions

Remark A.1 (On compactness of B). A compact underlying support, B, for distributions defined
by the family H of root densities is required by the identification results of Fox et al. (2012). In
addition, compactness of B allows the use of integration against unweighted Lebesgue measure to
define distances in the consistency and convergence rate results in Section 4.1. The use of un-
weighted Lebesgue measure makes compactification of the space of root densities H simpler. With
unbounded B, H has to be defined as a subset of weighted Sobolev space. A similar compactification
can be provided — see Section 4 of Freyberger and Masten (2019). This means that consistency with
non-compact B is still possible, since at least one of the conditions of Proposition 10 in Freyberger
and Masten (2019) will remain true. It is less clear what primitive conditions will be required for
the remaining conditions of Proposition 10 in Freyberger and Masten (2019). The proofs of the
convergence rate and asymptotic normality results directly use compactness of B. The asymptotic
normality result in particular requires showing a Donsker property for a certain collection of func-
tions. A sufficient condition for this Donsker property utilizes compactness of B. With unbounded
B, different sufficient conditions for this Donsker property have to be provided.

B Proof of theorems on Consistency and Convergence Rates

B.1 Proof of Lemma 4.1

Proof of Lemma 4.1. For any (w, x), by Jensen’s inequality,

J∑
y=0

P (y, w, x;α0, h0) log

[
P (y, w, x;α, h)

P (y, w, x;α0, h0)

]
≤ log

J∑
y=0

P (y, w, x;α0, h0)

[
P (y, w, x;α, h)

P (y, w, x;α0, h0)

]
= log 1 = 0.

Hence,

J∑
y=0

P0 (y, w, x;α0, h0) logP (y, w, x;α, h) ≤
J∑

y=0

P (y, w, x;α0, h0) logP (y, w, x;α0, h0) ≤ 0, (26)

where the rightmost inequality is because P (·;α, h) ≤ 1. Thus, −∞ ≤ ℓ∗(α, h) ≤ 0. If ℓ∗(α, h) =
−∞, then ℓ∗ (α0, h0) > ℓ∗(α, h) is immediate, since ℓ∗ (α0, h0) > −∞ by hypothesis. So, assume
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that ℓ(α, h) > −∞. Define the event

G(α, h) = {(w, x) : P (y, w, x;α, h) ̸= P0(y, w, x) for some y ∈ Y} .

By Assumption 2.2, G0 (G(α, h)) > 0. Furthermore, on G(α, h), since b 7→ log b is strictly concave,
Jensen’s inequality further implies that (26) is strict, i.e.

J∑
y=0

P (y, w, x;α0, h0) logP (y, w, x;α, h) <
J∑

y=0

P (y, w, x;α0, h0) logP (y, w, x;α0, h0) .

The conclusion of Lemma 4.1 follows from applying Lemma B.1 below with the measure G0.

Lemma B.1. On a measure space (X ,A, ν), let f, g ∈ L1(ν). If f ≥ g ν-a.e. and f > g on a set
of positive ν-measure, then

∫
fdν >

∫
gdν.

Proof of Lemma B.1. f ≥ g ν-a.e. implies
∫
A(f − g)dν ≥ 0 for any A ∈ A. Define

Bm =

{
x ∈ X : f(x) ≥ g(x) +

1

m

}
and B = {x ∈ X : f(x) > g(x)} .

so that B = ∪∞
m=1Bm. If ν (Bm) = 0 for all m ∈ N, then 0 ≤ ν(B) ≤

∑∞
m=1 ν (Bm) = 0, i.e.

ν(B) = 0. By contrapositive, the hypothesis ν(B) > 0 implies ν (Bn) > 0 for some n ∈ N. On Bn,
f − g > 1/n. Then

∫
fdν >

∫
gdν since∫

(f − g)dν =

∫
X\Bn

(f − g)dν +

∫
Bn

(f − g)dν ≥ 0 +
1

n
ν (Bn) > 0.

B.2 Proof of Theorem 4.1

The proof of Theorem 4.1 follows from verifying the regularity conditions of Proposition 10 of
Freyberger and Masten (2019) which is stated as Lemma B.2 in Appendix B.2.1. One of the
conditions is the content of Lemma 4.1. Verification of the remaining conditions is broken down into
three additional lemmas stated in Appendix B.2.1 immediately after the statement of Proposition
10 of Freyberger and Masten (2019). The actual proof of Theorem 4.1 is given afterwards in
Appendix B.2.2. Some additional lemmas containing useful envelope functions for the proof of
Theorem 4.1 and other results in this appendix are given in Appendix B.2.3. The remaining parts
of this subsection prove the additional lemmas.

B.2.1 Additional definitions and lemmas required for the proof of Theorem 4.1

Lemma B.2 (Proposition 10 in Freyberger and Masten (2019)). Let (Θ, ρ) be a pseudo-metric
space and suppose the following hold.
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(i) Θ is compact in the topology induced by ρ.

(ii) ℓ∗ : Θ → R is continuous on Θ in the relative topology induced by ρ on Θ.

(iii) ℓ∗(θ) ≤ ℓ∗ (θ0) for all θ ∈ Θ. Furthermore, ℓ∗(θ) = ℓ∗ (θ0) implies ρ (θ, θ0) = 0.

(iv) {ΘK : K ∈ N} is a sequence of subsets of Θ and for each K ∈ N, there is an element πKθ0 ∈
ΘK such that limK→∞ ρ (πKθ0, θ0) = 0.

(v) The sequence of natural numbers {Kn : n ∈ N} and the sequence of functions {ℓn : ΘKn → R}
are chosen to satisfy both Kn → ∞ and supθ∈ΘKn

|ℓn(θ)− ℓ∗(θ)|
p→ 0 as n→ ∞.

Let the sieve estimator be defined by

θ̂n ∈ argmax
θ∈ΘKn

ℓn(θ). (27)

Then ρ
(
θ̂n, θ0

)
p→ 0 as n→ ∞.

Before defining Θ,ΘK and the pseudometric ρ in Lemma B.2, we provide some definitions of
some preliminary objects. Let ρL2 denote the L2 metric:

ρL2 (h1, h2)
2 =

∫
(h1(b)− h2(b))

2 db. (28)

For each K ∈ N, let Γ̃K and H̃K denote the sets defined in Assumption 4.5 but indexed by the basis
dimension rather than sample size. In particular, let Let C and s be as in Assumption 4.3 and ψK

be basis functions satisfying Assumption 4.4. Then,

Γ̃K =

γ ∈ RK : γ′γ = 1, and γ′

 ∑
0≤|s|≤s

∫
[DsψK(b)] [DsψK(b)]′ db

 γ ≤ C2

 ,

H̃K =
{
γ′ψK : γ ∈ Γn

}
.

(29)

Thus, the sieve space in the main body of the paper is Hn = H̃Kn . The sets Θ,ΘK and the
pseudometric ρ in Lemma B.2 for the purposes of proving Theorem 4.1 are defined in Definition B.1
below. With these so defined, it is clear that the extremum estimator θ̂n in (27) is θ̂n =

(
α̂n, ĥn

)
from (7).

Definition B.1. Let Θ = A ×H and ΘK = A × H̃K , where H is defined in Assumption 4.3 and
H̃K is defined in (29). Define the pseudo-metric ρ : Θ×Θ → R by

ρ (θ1, θ2)
2 = ∥α1 − α2∥22 + ρL2 (|h1| , |h2|)

2 = ∥α1 − α2∥22 +
∫

(|h1(b)| − |h2(b)|)2 db. (30)

where θj = (αj , hj) for j ∈ {1, 2} and ∥α1 − α2∥22 = (α1 − α2)
′ (α1 − α2).
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Theorem 4.1 follows from Lemma B.2 combined with Lemma 4.1 and Lemmas B.3 to B.5 below.

Lemma B.3. Let Θ, ρ be as in Definition B.1. Θ is compact in the topology induced by ρ.

Proof of Lemma B.3. See Appendix B.2.4.

Lemma B.4. Let Θ, ρ be as in Definition B.1. ℓ∗ is continuous on Θ in the topology induced by ρ.

Proof of Lemma B.4. See Appendix B.2.5.

Lemma B.5. If Kn/n→ 0 as n→ ∞, then supθ∈ΘKn
|ℓn(θ)− ℓ∗(θ)|

p→ 0.

Proof of Lemma B.5. See Appendix B.2.6.

B.2.2 The actual proof of Theorem 4.1

Proof of Theorem 4.1. Condition (i) of Lemma B.2 is the content of Lemma B.3. Condition (ii) of
Lemma B.2 is the content of Lemma B.4. Condition (iii) was shown in Lemma 4.1. The approxi-
mation requirement in condition (iv) holds by Assumption 4.4 (ii). For condition (v), Kn → ∞ is
assumed and the uniform convergence condition is the content of Lemma B.5.

Together, these prove (11) in Theorem 4.1. Then, (12) in Theorem 4.1 follows from (11) since∫ ∣∣∣ĥn(b)2 − h0(b)
2
∣∣∣db = ∫ (

|ĥn(b)|+ h0(b)
) ∣∣∣ĥn(b)− h0(b)

∣∣∣db
≤
(∫ (

|ĥn(b)|+ h0(b)
)2

db

)1/2

·
(∫ (

|ĥn(b)| − h0(b)
)2

db

)1/2

≤ 2

(∫ (
|ĥn(b)| − h0(b)

)2
db

)1/2

.

The left hand side of the last inequality above is op(1) by (11). The last inequality above follows
from Lemma B.6 below.

Lemma B.6. If
∫
g2j = 1 for j = 1, 2, then

∫
(g1 + g2)

2 ≤ 4.

Proof of Lemma B.6. By Jensen’s inequality,

(g1 + g2)
2 = 4

(g1
2

+
g2
2

)2
≤ 4

(
g21
2

+
g22
2

)
= 2

(
g21 + g22

)
.

Integrating both sides,
∫
(g1 + g2)

2 ≤ 2
(∫
g21 +

∫
g22
)
= 4.

B.2.3 Useful envelope functions for log-likelihoods and choice probabilities

Here we state some envelope function results that are useful in proving various dominance and
“stochastic Lipschitz” properties. The proofs of lemmas here are given in Appendix F.1.
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Lemma B.7. Let Assumptions 2.1 and 4.1 hold. Define

ℓ
∗
(y, x, w) = log(J + 1) + 2

 J∑
j=0

∥wj∥2

 · MA + 2

 J∑
j=0

∥xj∥2

 · MB,

where MA = sup
α∈A

∥α∥2, and MB = sup
b∈B

∥b∥2.

(31)

Given any function h : B → R such that
∫
h(b)2 db = 1, for any y, w, x,

| logP (y, w, x;α, h)| ≤ ℓ
∗
(y, x, w). (32)

Proof of Lemma B.7. See Appendix F.1.1.

Lemma B.8. Let Θ, ρ be as defined in Definition B.1. For any y, w, x and θ1, θ2 ∈ Θ, denoting
θj = (αj , hj) for j = 1, 2,

|P (y, w, x; θ1)− P (y, w, x; θ2)| ≤ UP (y, w, x) · ρ (θ1, θ2) , (33)

where UP (y, w, x) = 2
√
2max

1,
J∑

j=0

∥wj∥2

 . (34)

Proof of Lemma B.8. See Appendix F.1.2.

Lemma B.9. For any y, w, x and θ1, θ2 ∈ Θ, denoting θj = (αj , hj) for j = 1, 2,

|logP (y, w, x; θ1)− logP (y, w, x; θ2)| ≤ U(y, w, x)ρ (θ1, θ2) , (35)

where U(y, w, x) = exp
(
ℓ
∗
(y, w, x)

)
· UP (y, w, x) (36)

Proof of Lemma B.9. See Appendix F.1.3.

B.2.4 Proof of Lemma B.3

Proof of Lemma B.3. Consider the relation on Θ, θ1 ↔ θ2 if and only if ρ (θ1, θ2) = 0 for every
θ1, θ2 ∈ Θ. It is straightforward to show that ↔ is an equivalence relation. The topology induced
by ρ on Θ is equivalent to the topology it induces on the equivalence classes under ↔. Let H+ =

{h ∈ H : h ≥ 0 Leb -a.e.} be the set of (equivalence classes of almost everywhere equal) non-negative
elements of H. The set of equivalence classes under ↔ is isomorphic to A×H+. The pseudo metric
ρ in Definition B.1 is now a metric on Θ+ = A×H+. By the previous equivalence and isomorphism
arguments, proving compactness of Θ under ρ is equivalent to proving compactness of Θ+ under ρ.

ρ metrizes the product topology on Θ+ where we endow A with the Euclidean topology and H+

with the L2 topology. A product of compact sets is compact in the product topology, and hence
it is sufficient to show compactness of A and H+ separately in their respective topologies. A is
compact in RdW by Assumption 4.1. The Sobolev ball Ws,2(B, C) is L2-compact by Theorem 1 of
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Freyberger and Masten (2019). The set H is a closed subset of Ws,2(B, C) (it is the intersection of
Ws,2(B, C) and the surface of the L2 unit sphere). Hence, H is L2-compact. H+ is a closed subset
of H (it is the set of non-negative elements of H). Thus, H+ is also a compact subset of L2.

B.2.5 Proof of Lemma B.4

Proof of Lemma B.4. Let θn be a sequence in Θ with limn→∞ ρ (θn, θ∗) = 0 for some θ∗ ∈ Θ. Write

ℓ∗ (θn)− ℓ∗ (θ∗) = E [logP (Y,W,X; θn)− logP (Y,W,X; θ∗)] .

Showing the above difference tends to zero as n→ ∞ proves continuity of ℓ∗. To that end, we show
that | logP (Y,W,X; θ)| is bounded above over all θ ∈ Θ by an integrable function of (Y,W,X) and
that P (y, w, x; θn) converges to P (y, w, x; θ∗) > 0 for each y, w, x. The above displayed difference
then limits to zero by the dominated convergence theorem.

For dominance, Lemma B.7 shows in (32) that

| logP (y, w, x;α, h)| ≤ ℓ
∗
(y, x, w)

where ℓ∗(y, x, w) is defined in (31) as

ℓ
∗
(y, x, w) = log(J + 1) + 2

 J∑
j=0

∥wj∥2

 · MA + 2

 J∑
j=0

∥xj∥2

 · MB,

where MA = sup
α∈A

∥α∥2, and MB = sup
b∈B

∥b∥2.

ℓ
∗
(y, x, w) is integrable by Assumption 4.2.

Then, we need to show convergence of the choice probabilities. To that end, (33) in Lemma B.8
shows that

|P (y, w, x; θn)− P (y, w, x; θ∗)| ≤ 2
√
2max

1,
J∑

j=0

∥wj∥2

 ρ (θn, θ∗) .

Hence, P (y, w, x; θn) → P (y, w, x; θ∗) > 0 as n → ∞ for any y, w, x, where positivity follows by
κ(·) ∈ (0, 1). Thus, logP (y, w, x; θn) → logP (y, w, x; θ∗) as n → ∞ for any y, w, x. Together with
the dominance result in (32), we get continuity of the expected log-likelihood.
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B.2.6 Proof of Lemma B.5

Proof of Lemma B.5. Let νn denote the empirical process with respect to {Yi,Wi, Xi}ni=1 and ν0

denote the true distribution of (Y,W,X) by ν0 so that

νn[g] =
1

n

n∑
i=1

g (Yi,Wi, Xi) , (37)

ν0[g] = E [g(Y,W,X)] . (38)

Let Ln = {logP (·; θ) : θ ∈ ΘKn} denote the set of log-likelihood values indexed by the sieve space,
and set

∥νn − ν0∥Ln
= sup

ℓ∈Ln

|[νn − ν0] (ℓ)| = sup
θ∈ΘKn

|ℓn(θ)− ℓ∗(θ)| .

The task is then to prove that ∥νn − ν0∥Ln
= op(1). To that end, we apply Theorem 2.4.3 in van

der Vaart and Wellner (1996). The conditions of Theorem 2.4.3 in van der Vaart and Wellner (1996)
are first are shown to hold through the use of Theorem 2.7.11 in van der Vaart and Wellner (1996).

Let θ1, θ2 ∈ ΘK be given with θj = (αj , hj) for j = 1, 2. Then, (35) and (36) in Lemma B.9
show that

|logP (y, w, x; θ1)− logP (y, w, x; θ2)| ≤ U(y, w, x)ρ (θ1, θ2) ,

for a non-negative function U(·). By Assumption 4.2, U is ν0-integrable, i.e. ν0[U ] <∞.
Let the ε-covering number of ΘKn in the metric ρ be N (ε,ΘKn , ρ). Then, by Theorem 2.7.11

in van der Vaart and Wellner (1996), for any norm ∥ · ∥ on Ln,

logN[] (ε,Ln, ∥ · ∥) ≤ logN (ε/ ∥U∥ ,ΘKn , ρ) ,

whereN[] (ε,Ln, ∥ · ∥) is the ε-bracketing number of Ln with respect to the norm ∥·∥. By Lemma B.10
below, we can bound the right hand side of the above display as

logN[] (ε,Ln, ∥ · ∥) ≤ logN (ε/ ∥U∥ ,ΘKn , ρ)

≤ dW · log
(
3
√
2MA ∥U∥ /ε

)
+ (Kn − 1) · log

(
3
√
2 ∥U∥ /ε

)
+ log (2Kn) .

Next, we apply Theorem 2.4.3 of van der Vaart and Wellner (1996). Working with the normed
space L1 (νn), we have logN (ε,Ln,L1 (νn)) ≤ logN[] (ε,Ln,L1 (νn)). That is, the covering number
is dominated by the bracketing number. Since U is a non-negative function, its L1 (νn) norm is
νn[U ]. Therefore,

logN (ε,Ln,L1 (νn)) ≤ dW · log
(
3
√
2MAνn [U ] /ε

)
+ (Kn − 1) · log

(
3
√
2νn [U ] /ε

)
+ log (2Kn) .

By Assumption 4.2, 0 < ν0[U ] < ∞ and so, νn [U ]
a.s.→ ν0 [U ] by the Strong Law of Large Numbers.

Since Kn/n → 0 as n → ∞, it then follows that logN (ε,Ln,L1 (νn)) /n = op(1). By Theorem
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2.4.3 of van der Vaart and Wellner (1996),

E

[
sup

θ∈ΘKn

|ℓn(θ)− ℓ∗(θ)|

]
= E

[
∥νn − ν0∥Ln

]
→ 0,

and by Markov’s inequality, supθ∈ΘKn
|ℓn(θ)− ℓ∗(θ)| = op(1).

Lemma B.10. Let ΘK , ρ be as defined in Definition B.1. The ε-covering number of ΘK with respect
to ρ satisfies the following inequality

logN (ε,ΘK , ρ) ≤ dW · log
(
3
√
2MA/ε

)
+ (K − 1) · log(3

√
2/ε) + log(2K), (39)

where MA = supα∈A ∥α∥2.

Proof of Lemma B.10. Recall that ΘK = A × H̃K . The (ε/
√
2)-covering number of A in the Eu-

clidean norm ∥ · ∥2 is bounded by
(
3
√
2MA/ε

)dW — see for example Exercise 2.1.6 on page 94
of van der Vaart and Wellner (1996). The

(
ε/
√
2
)
-covering number of H̃K with respect to ρL2

is 2K(3
√
2/ε)K−1. To see this, take any h1, h2 ∈ H̃K and write hj = ψ′

Kγj for j = 1, 2. By
orthonormality of ψK in Assumption 4.4 (i), ∥γj∥2 = 1 and

ρL2 (h1, h2) =

∫
(h1(b)− h2(b))

2 db =

∫ (
[γ1 − γ2]

′ψK(b)
)2

db

= (γ1 − γ2)
′
[∫

ψK(b)ψK(b)′db

]
(γ1 − γ2)

= ∥γ1 − γ2∥22 .

The
(
ε/
√
2
)
-covering number of H̃K in ρL2 is thus bounded by the

(
ε/
√
2
)
-covering number of the

surface of the K-dimension unit sphere with respect to the Euclidean norm ∥ · ∥2. By Lemma 1 of
Gallant and Souza (1991), this is bounded above by 2K((2

√
2/ε) + 1)K−1.

The ε-covering number of ΘK with respect to ρ is bounded by the product of
(
ε/
√
2
)
-covering

numbers of A and H̃K in their respective norms. To see this, given θ1, θ2 ∈ Θ with θj = (αj , hj),

ρ (θ1, θ2)
2 = ∥α1 − α2∥22 +

∫
(|h1(b)| − |h2(b)|)2 db

≤ ∥α1 − α2∥22 +
∫

(h1(b)− h2(b))
2 db

= ∥α1 − α2∥22 + ρL2 (h1, h2)
2 .

The inequality above is due to ||a| − |b|| ≤ |a − b|. Given finite (ε/
√
2)-coverings of A and H̃K ,

the above inequality implies that the product of these two coverings constitutes a ε-cover of ΘK in
the metric ρ. The cardinality of this product covering is the product of the individual cardinalities.
Thus, (39) follows by taking the products of the covering numbers for A and H̃K from the previous
paragraph and then taking logs.
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B.3 Proof of Theorem 4.2

This result is proven by verifying the conditions of Theorem 3.2 in Chen (2007). In Appendix B.2.1,
I state three additional lemmas required for the proof of Theorem 4.2. Of these lemmas, two serve
as verification of the stated conditions of Theorem 3.2 in Chen (2007) and one characterizes the
modulus of continuity of the empirical process indexed by log-likelihood differences. The actual
proof of Theorem 4.2 is in Appendix B.3.2. The remaining parts of this subsection prove the
additional lemmas stated in Appendix B.2.1.

B.3.1 Additional lemmas required for the proof of Theorem 4.2

Lemma B.11. Under Assumptions 2.1, 4.1 and 4.2, there is C1 ∈ (0,∞) such that for all ε > 0,

sup
θ∈ΘKn :ρ(θ,θ0)≤ε

Var [logP (Y,W,X; θ)− logP (Y,W,X; θ0)] ≤ C1ε
2. (40)

Proof of Lemma B.11. See Appendix B.3.3.

Lemma B.12. Under Assumptions 2.1, 4.1 and 4.2, there is a function U(Y,W,X) such that
E
[
U(Y,W,X)2

]
<∞ and for any δ > 0,

sup
{θ∈ΘKn :ρ(θ,θ0)≤δ}

|logP (Y,W,X; θ)− logP (Y,W,X; θ0)| ≤ U(Y,W,X)δ. (41)

Proof of Lemma B.12. See Appendix B.3.4.

Next, let a > 0 and b ≥ 0 be constants to be specified subsequently (their exact values are not
important, they are required only to be finite). For δ ∈ (0, 1), define the entropy integral used in
Theorem 3.2 of Chen (2007) (and Condition A.4 for Theorem 1 of Chen and Shen (1998)) by

Jn,δ :=

∫ aδ

bδ2

√
logN[] (ε,Ln,δ,L2 (ν0)) dε. (42)

For some C2 ∈ (0,∞), let

δn = inf

{
δ ∈ (0, 1) :

1√
nδ2

Jn,δ ≤ C2

}
. (43)

The rate of convergence shall be determined in part by δn above.

Lemma B.13. There exists a constant C ∈ (0,∞), such that setting a = 3C and b = 0, Jn,δ in
(42) can be bounded as follows:

Jn,δ ≤
3Cδ

√
π

2
·
√
dW +Kn. (44)
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This implies that for a constant C3 > 0, δn in (43) can be bounded as:

δn ≤ C3

√
dW +Kn

n
. (45)

Proof of Lemma B.13. See Appendix B.3.5.

B.3.2 The actual proof of Theorem 4.2

Proof of Theorem 4.2. We start by verifying the conditions of Theorem 3.2 in Chen (2007), in
particular their conditions 3.6 to 3.8. Here, data are assumed to be i.i.d. and hence, Condition 3.6 of
Chen (2007) holds by assumption. Condition 3.7 of Chen (2007) follows directly from Lemma B.11.
Condition 3.8 of Chen (2007) follows directly from Lemma B.12.

By Assumption 4.4 (ii), there is γ̃0,n ∈ Γ̃Kn such that setting h̃0,n = γ′0,nψKn , ρL2

(
h̃0,n, h0

)
=

O(K
−s/dX
n ). Without loss of generality, we can always set γ̃0,n equal to the L2 projection coefficients

of h0 onto the span of ψKn . There is no requirement for γ̃0,n to produce a density, i.e. it may (and
indeed usually will)13 be the case that

∫
h̃0,n(b)

2 db ̸= 1 so that h̃0,n /∈ Hn. This is not difficult to
resolve. By orthonormality of ψKn , i.e. Assumption 4.4 (i),

∫
h̃0,n(b)

2 db = ∥γ̃0,n∥22.

γ0,n = γ̃0,n/ ∥γ̃0,n∥2 ,

h0,n = γ′0,nψKn .
(46)

Clearly, γ′0,nγ0,n = 1 and
∫
h0,n(b)

2 db = 1. By Lemma B.14 below ρL2 (h0,n, h0) = O(K
−s/dX
n )

so that the approximation rate is unchanged by this normalization. Since α0 ∈ A, we can set
θ0,n = (α0, h0,n) so that θ0,n ∈ ΘKn . Furthermore, given the approximation rate by h0,n it follows
that ρ (θ0,n, θ0) = O(K

−s/dX
n ). This characterizes the “bias” part of the convergence rate.

By Lemma B.13 (in particular (45)), the “standard deviation” (or “variance”) part of the conver-
gence rate is Op (δn) = Op

(√
(dW +Kn) /n

)
= Op

(√
Kn/n

)
, where the second equality follows

since dW is constant as n→ ∞. By Theorem 3.2 of Chen (2007),

ρ
(
θ̂n, θ0

)
= Op

(
max

{
K−s/dX

n ,

√
Kn

n

})
.

Thus, (13) holds. Since
∫ ∣∣∣ĥn(b)2 − h0(b)

2
∣∣∣ db ≤ 2

√∫ (
|ĥn(b)| − h0(b)

)2
db, (14) also follows.

Lemma B.14. Let h ∈ L2 satisfy
∫
h(b)2db = 1 and let ψ = (ψ1, . . . , ψK)′ be a vector of or-

thonormal functions so that
∫
ψj(b)ψk(b)db = I{j = k}. Let γ̃∗ =

∫
ψ(b)h(b) db be the L2 linear

projection coefficients of h onto the linear span of ψ and define γ∗ = γ̃∗/ ∥γ̃∗∥2. Furthermore, let

13. If γ̃0,n are equal to the L2 projection coefficients, then it can be shown that
∫
h̃0,n(b)

2 db ≤ 1 with equality
only if h0 is contained in the linear span of ψKn . The “if part” follows from Parseval’s identity, and the “only if part”
follows from either one of Parseval’s identity or Bessel’s inequality.
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h̃∗ = γ̃′∗ψ and h∗ = γ′∗ψ. Then,

0 ≤ 1− ∥γ̃∗∥2 ≤ ρL2

(
h, h̃∗

)2
≤ ρL2 (h, h∗)

2 = 2 (1− ∥γ̃∗∥2) . (47)

Remark B.1. The qualitative content of Lemma B.14 is as follows. Given a function h whose
square integrates to one, suppose we consider two approximations to it. One projects h onto a
finite-dimensional linear subspace without norm preservation, i.e. unconstrained projection. The
other takes this projection and normalizes it to unit norm, i.e. unit-norm constrained projection.14

The approximation error of both is tightly characterized by the difference between one and the size
of the unconstrained projection coefficients. Tightness means bounded above and below by universal
constants: here the constants are 1 and 2. That is, if the rate of approximation can be written as a
function of dimension so that 1− ∥γ̃∗∥2 = ζ(K) for some ζ(·), then both ρ

(
h, h̃∗

)
= O (ζ(K)) and

ρ (h, h∗) = O (ζ(K)).

Proof of Lemma B.14. Let I be the K × K identity matrix. I shall drop b and db everywhere in
integrals for this proof because they are unnecessary. Orthonormality of ψ implies

∫
ψψ′ = I. By

h = h̃∗ + h− h̃∗, and h̃∗ = γ̃′∗ψ,

1 =

∫
h2 =

∫
h̃2∗ + 2

∫
h̃∗ ·

(
h− h̃∗

)
+

∫ (
h− h̃∗

)2
= γ̃′∗

[∫
ψψ′

]
γ̃∗ + 2γ̃′∗

[∫
ψ ·
(
h− h̃∗

)]
+

∫ (
h− h̃∗

)2
= ∥γ̃∗∥22 +

∫ (
h− h̃∗

)2
,

since
∫
ψ ·

(
h− h̃∗

)
= 0 (by h̃∗ being a linear projection). Therefore, since

∫ (
h− h̃∗

)2
≥ 0,

∥γ̃∗∥2 ≤ 1 proving the far left non-negativity claim of (47). Next, the above display also shows that

ρL2

(
h, h̃∗

)2
=

∫ (
h− h̃∗

)2
= 1− ∥γ̃∗∥22 = (1 + ∥γ̃∗∥2) (1− ∥γ̃∗∥2) .

Combining the above and 0 ≤ ∥γ̃∗∥2 ≤ 1, it readily follows that

0 ≤ 1− ∥γ̃∗∥2 ≤ ρL2

(
h, h̃∗

)2
≤ 2 (1− ∥γ̃∗∥2) .

The full conclusion of (47) follows if we show ρL2 (h, h∗)
2 = 2 (1− ∥γ̃∗∥2). To that end,

ρL2 (h, h∗)
2 =

∫
(h− h∗)

2 =

∫
h2︸ ︷︷ ︸

=1

+

∫
h2∗︸ ︷︷ ︸

=1

− 2

∫
h · h∗

= 2− 2γ′∗

∫
ψ · h

14. When the basis is orthonormal, it can be shown that the solution to least squares projection with a unit norm
constraint is the unconstrained least squares coefficients normalized to have unit norm.
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= 2
(
1− γ′∗γ̃∗

)
= 2

(
1− γ̃′∗γ̃∗

∥γ̃∗∥2

)
= 2 (1− ∥γ̃∗∥2) .

B.3.3 Proof of Lemma B.11

Proof of Lemma B.11. (35) and (36) in Lemma B.9 show that

|logP (y, w, x; θ1)− logP (y, w, x; θ2)| ≤ U(y, w, x)ρ (θ1, θ2) ,

for a non-negative function U(·). By Assumption 4.2, U is square-integrable against ν0, i.e.
ν0
[
U2
]
<∞. Therefore

Var [logP (Y,W,X; θ)− logP (Y,W,X; θ0)]

≤ E
[
{logP (Y,W,X; θ)− logP (Y,W,X; θ0)}2

]
≤ E

[
U(Y,W,X)2

]
ρ (θ, θ0)

2 .

Hence, (40) holds with C1 = E
[
U(Y,W,X)2

]
which is finite by Assumption 4.2.

B.3.4 Proof of Lemma B.12

Proof of Lemma B.12. (35) and (36) in Lemma B.9 show that

|logP (y, w, x; θ1)− logP (y, w, x; θ2)| ≤ U(y, w, x)ρ (θ1, θ2) ,

for a non-negative function U(·). By Assumption 4.2, U is square-integrable against ν0, i.e.
E
[
U(Y,W,X)2

]
<∞. Hence, (41) holds.

B.3.5 Proof of Lemma B.13

Proof of Lemma B.13. For δ > 0, denote

ΘKn,δ = {θ ∈ ΘKn : ρ (θ, θ0) ≤ δ} ,

Ln,δ = {logP (·; θ)− logP (·; θ0) : θ ∈ ΘKn,δ} .
(48)

By Lemma B.12 and Theorem 2.7.11 in van der Vaart and Wellner (1996), for any norm ∥ · ∥,

logN[] (ε,Ln,δ, ∥ · ∥) ≤ logN (ε/ ∥U∥ ,ΘKn,δ, ρ) .
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By Lemma B.15 below,

logN[] (ε,Ln,δ, ∥ · ∥) ≤ (dW +Kn) log (3δ∥U∥/ε) . (49)

Let ν0 be the distribution of (Y,W,X). Working with the normed space L2 (ν0), denote C2 =

ν0
[
U2
]
. Then, the above bracketing entropy bound is

logN[] (ε,Ln,δ,L2 (ν0)) ≤ (dW +Kn) · log (3Cδ/ε) .

We can thus bound Jn,δ in (42)

Jn,δ :=

∫ aδ

bδ2

√
logN[] (ε,Ln,δ,L2 (ν0)) dε

≤
√
dW +Kn ·

∫ aδ

bδ2
log (3Cδ/ε) dε

≤
√
dW +Kn ·

∫ aδ

0
log (3Cδ/ε) dε.

Then, set a = 3C and use (158) in Lemma F.4 to conclude that

Jn,δ ≤
3Cδ

√
π

2
·
√
dW +Kn.

Hence (44) follows.
Next, apply this bound to δn in (43) as follows:

δn := inf

{
δ ∈ (0, 1) :

1√
nδ2

Jn,a,b,δ ≤ C2

}
≤ inf

{
δ ∈ (0, 1) :

3C
√
π

2
√
nδ

·
√
dW +Kn ≤ C2

}
.

The solution to the last infimum problem above yields δn ≤ C3

√
dW+Kn

n for a constant C3 > 0.
Hence, (45) follows.

Lemma B.15. Let ΘK,δ be as defined in (48). Then,

logN (ε,ΘK,δ, ρ) ≤ (dW +K) log (3δ/ε) . (50)

Proof of Lemma B.15. Let

Aδ/
√
2 =

{
α ∈ A : ∥α− α0∥2 ≤ δ/

√
2
}
, (51)

H̃K,δ/
√
2 =

{
h ∈ H̃K : ρL2 (h, h0) ≤ δ/

√
2
}
. (52)

Then, ΘK,δ ⊆ Aδ/
√
2 × H̃K,δ/

√
2. Hence, the covering number of ΘK,δ is less than that of Aδ/

√
2 ×
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H̃K,δ/
√
2. As argued in the proof of Lemma B.10, the ε-covering number of Aδ/

√
2 × H̃K,δ/

√
2 is

bounded by the product of the (ε/
√
2)-covering number of Aδ/

√
2 and the (ε/

√
2)-covering number

of H̃K,δ/
√
2.

The (ε/
√
2)-covering number of Aδ/

√
2 is bounded by (3δ/ε)dW (the 1/

√
2 on both terms cancel

out) — see for example Exercise 2.1.6 on page 94 of van der Vaart and Wellner (1996). The(
ε/
√
2
)
-covering number of H̃K,δ/

√
2 with respect to ρL2 is bounded by (3δ/ε)K . To see this, take

any h1, h2 ∈ H̃K,δ/
√
2, where hj = ψ′

Kγj for j = 1, 2. By orthonormality of ψK (Assumption 4.4
(i)),

ρL2 (h1, h2) =

∫
(h1(b)− h2(b))

2 db =

∫ (
[γ1 − γ2]

′ψK(b)
)2

db

= (γ1 − γ2)
′
[∫

ψK(b)ψK(b)′db

]
(γ1 − γ2)

= ∥γ1 − γ2∥22 .

Thus, the
(
ε/
√
2
)
-covering number of H̃K,δ/2 is bounded above by the

(
ε/
√
2
)
-covering number of

the Euclidean ball of radius δ/
√
2 centered at the origin. This is because, H̃K,δ/

√
2 is contained in

the ball of radius δ/
√
2 around h0, and translation by −h0 does not change the covering number.

By Exercise 2.1.6 on page 94 of van der Vaart and Wellner (1996), the
(
ε/
√
2
)
-covering number of

the Euclidean ball of radius δ/
√
2 centered at the origin is (3δ/ε)K . Take the product of the two

covering numbers for Aδ/
√
2 and H̃K,δ/

√
2 respectively and take logs to get (50).

C Asymptotic Normality

Throughout, let νn denote the empirical distribution associated with the data {Yi,Wi, Xi}ni=1 and
ν0 denote the true population distribution of (Y,W,X). Furthermore, let µn = νn − ν0 be the
centered empirical process with respect to observed data. The following linear functional notation
will be used throughout: for a (measurable) function g,

νn[g] :=
1

n

n∑
i=1

g (Yi,Wi, Xi) , ν0[g] := Eν0 [g(Y,W,X)] =

∫
g (y, w, x) νn (dy,dw,dx)

µn[g] := (νn − ν0)[g] =
1

n

n∑
i=1

{g (Yi,Wi, Xi)− Eν0 [g(Y,W,X)]} .

In this part of the present section, the error breakdown of plug-in estimation introduced in Sec-
tion 4.2 is stated formally as Lemma C.1. The proof of Lemma C.1 is given in Appendix D.1 and
involves little more than algebra and two applications of Fubini’s Theorem. Immediately afterwards,
the proof of Theorem 4.3 is given. This proof is broken down into various parts, which are all pro-
vided in subsections of the present appendix section. Some of these parts will themselves involve
additional results which are stated as additional lemmas with proofs deferred to Appendix D. By
and large, the proofs deferred to Appendix D are ones that are lengthy.
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Lemma C.1. Let

T1(α, b) =

∫
t(w, x;α, b)G0(dw,dx),

T2,0(w, x) =

∫
t (w, x;α0, b)h0(b)

2db,

T̂2,n(w, x) =

∫
t (w, x; α̂n, b) ĥn(b)

2db.

(53)

Then

τ̂n − τ0 = R1,n +R2,n +R3,n, (54)

where R1,n =

∫
T1 (α̂n, b) ĥn(b)

2db−
∫
T1 (α0, b)h0(b)

2db, (55)

R2,n = µn [T2,0] =
1

n

n∑
i=1

{T2,0 (Wi, Xi)− E [T2,0(W,X)]} , (56)

R3,n = µn

[
T̂2,n − T2,0

]
. (57)

C.1 Proof of Theorem 4.3

Proof of Theorem 4.3. By Lemma C.4,
√
nR3,n

p→ 0, and so from (54),

√
n · (τ̂n − τ0) =

√
n · (R1,n +R2,n) + op(1).

By (89) of Theorem C.1, there is a non-decreasing sequence of constants Vϕ,n and a sequence of
functions ϕ̇n that have zero mean against ν0 (see Lemma C.12) such that

√
nR1,n

Vϕ,n
=

1√
n

n∑
i=1

ϕ̇n (Yi,Wi, Xi) + op(1)
d→ N (0, 1). (58)

In (58), asymptotic normality follows from showing that Lindeberg’s condition holds for the tri-
angular array ϕ̇n (Yi,Wi, Xi). Since T2,0 (Wi, Xi) has finite second moment and does not change
with n, it follows that Lindeberg’s condition holds for the triangular array of random vectors(
ϕ̇n (Yi,Wi, Xi) , T2,0 (Wi, Xi)

)
. Furthermore, by Lemma C.12, E

[
ϕ̇n(Y,W,X)

∣∣∣W,X] = 0, so that

Cov
[
ϕ̇n(Y,W,X), T2,0(W,X)

]
= 0. (59)

Therefore, since R2,n = µn [T2,0] in (56),

√
n

(
R1,n/Vϕ,n

R2,n

)
=

√
nµn

[(
ϕ̇n

T2,0

)]
+ op(1)

d→ N2

([
0

0

]
,

[
1 0

0 Var [T2,0(W,X)]

])
. (60)
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By (90) of Theorem C.1, Vϕ,n ↗ Vϕ for some Vϕ ∈ (0,∞). Combining the Cramér-Wold device and
Slutsky’s Theorem,

√
n · (R1,n +R2,n) = Vϕ,n ·

√
nR1,n

Vϕ,n
+
√
nR2,n

d→ N (0, Vτ ) ,

where
Vτ = Vϕ +Var [T2,0(W,X)] .

Hence,
√
n · (τ̂n − τ0) =

√
n · (R1,n +R2,n) + op(1)

d→ N (0, Vτ ) . (61)

Thus, set
Vτ,n = Vϕ,n +Var [T2,0(W,X)] .

By Vϕ,n ↗ Vϕ, it is clear that Vτ,n ↗ Vτ . By (97) of Theorem C.2, V̂τ,n in (18) satisfies

V̂τ,n
Vτ,n

= 1 + op(1).

By the Continuous Mapping Theorem, √
V̂τ,n

p→
√
Vτ .

By Slutsky’s Theorem and (61) √
n · (τ̂n − τ0)√

V̂τ,n

d→ N (0, 1),

which is exactly (16). The rate claim has already been proven since V̂τ,n/Vτ,n = 1 + op(1) and
Vτ,n ↗ Vτ <∞.

The remainder of this section will proceed as follows. First, it will be shown that R3,n is
asymptotically negligible in the sense that

√
n · R3,n = op(1). Next, asymptotic normality of R1,n

will be characterized by verifying conditions in Chen and Liao (2014). A number of additional
definitions and concepts have to be introduced for this, and thus, this subsection is the longest one.
Finally, V̂τ,n in (18) will be shown to be a consistent estimator of Vτ by combining results from
Chen and Liao (2014) with a Donsker property derived during the proof that

√
n ·R3,n = op(1).

C.2 Asymptotic negligibility of the third remainder term R3,n in (57)

Denote the set of probability measures over B by PM(B). Denote the following families:

T = {t(·;α, b) : α ∈ A, b ∈ B}, (62)

T∗ =

{∫
t(·;α, b)F (db) : α ∈ A, F ∈ PM(B)

}
. (63)
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Lemma C.2. Let Assumptions 2.1, 4.1 and 4.6 hold. Then the families T and T∗ in (62) and
(63) respectively are both G0-Donsker. Furthermore, define the function T

∗ by

T
∗
(w, x) = |t(w, x, α, b)|+ 2

(
M2

A +M2
B
)1/2

T (w, x) (64)

where MA = supα∈A ∥α∥, MB = supb∈B ∥b∥ and T (·), α, b are defined in Assumption 4.6. Then,∫ (
T
∗
)2

dG0 <∞, and T ∗ is an envelope function for both T and T∗.

Lemma C.3. Let Assumptions 2.1, 4.1 and 4.6 hold. If ρ
(
θ̂n, θ0

)
p→ 0, then

∫ (
T̂2,n(w, x)− T2,0(w, x)

)2
G0(dw,dx)

p→ 0 as n→ ∞. (65)

Together, these two lemmas imply asymptotic negligibility of R3,n in (57).

Lemma C.4. Let R3,n be as defined in (57). Let ρ be the metric in Definition B.1. Under Assump-
tions 2.1, 4.1 and 4.6, if ρ

(
θ̂n, θ0

)
p→ 0, then

√
n ·R3,n

p→ 0.

Proof of Lemma C.4. Since h20 and ĥ2n are probability densities on B, it follows that T2,0, T̂2,n in
(53) are members of T∗ in (63). By Lemma C.2, T∗ is a G0-Donsker class. By Lemma C.3,
Assumptions 2.1, 4.1 and 4.6 and ρ

(
θ̂n, θ0

)
p→ 0 imply that

∫ (
T̂2,n(w, x)− T2,0(w, x)

)2
G0(dw,dx)

p→ 0 as n→ ∞.

Thus by Lemma 19.24 of van der Vaart (1998),
√
n ·R3,n =

√
n · µn

[
T̂n − T0

]
p→ 0.

C.3 Asymptotic normality of the leading term

For θ = (α, h) ∈ A×H, denote

ϕ(θ) = ϕ(α, h) =

∫
T1(α, b)h(b)

2db. (66)

Then, letting θ̂n =
(
α̂n, ĥn

)
and θ0 = (α0, h0), we have

R1,n = ϕ
(
θ̂n

)
− ϕ (θ0) . (67)

C.3.1 Local parameter spaces and the Fisher norm

Given consistency and convergence rates in Theorems 4.1 and 4.2, we can focus on “local” and
“rate-local” versions of the parameter and sieve spaces. For small ε > 0, the “local” spaces are:

Θε = {θ ∈ Θ : ρ (θ, θ0) < ε} ,

Θn,ε = Θε ∩ΘKn = {θ ∈ ΘKn : ρ (θ, θ0) < ε} .
(68)
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Next, let ζn ≥ 1 be a non-decreasing, slowly growing sequence such that

ζn ↗ ∞,

ζ2n ·max

{√
n ·K−2s/dX

n ,
Kn√
n

}
→ 0.

(69)

The “rate-local” spaces are:

N0,n =

{
θ ∈ Θ : ρ (θ, θ0) ≤ max

{
K−s/dX

n ,

√
Kn

n

}
· ζn.

}
,

Nn = N0,n ∩ΘKn .

(70)

Then, θ̂n ∈ Nn with probability approaching 1. As an example, if Kn = K0n
δ for some 0 < δ < 1

chosen according to the conditions of Theorem 4.3, then we can use

ζn = log logmax {ee, n} .

Remark C.1. Note that ζn satisfying these conditions always exists. Indeed, given any positive
sequence ξn → 0 (not necessarily monotone in n), let ξ∗,n = supm≥n ξm. Then ξ∗,n ↓ 0, i.e. ξ∗,n is
(weakly) monotonically decreasing and limits to zero. We can set ζn = ξ

−1/4
∗,n . Then, ζn ↑ ∞ (by

ξ∗,n ↓ 0) and since ξn ≤ ξ∗,n, ζ2n · ξn ≤ ζ2n · ξ∗,n =
√
ξ∗,n → 0. With ξn = max

{√
n ·K−2s/dX

n , Kn√
n

}
,

we have a specific instance of ζn from the above reasoning.

The likelihood function is pathwise differentiable at θ0 ∈ Θ and its pathwise derivative is linear
in v = θ− θ0 for θ = (α, h) ∈ Θ. To see this, let ℓ(·) ≡ logP (·) and v = (vα, vh) = (α− α0, h− h0).
Then,

∆(y, w, x; θ0) [v] := lim
ε↓0

1

ε
· (ℓ (y, w, x;α0 + εvα, h0 + εvh)− ℓ (y, w, x;α0, h0))

= ∆α (y, w, x; θ0)
′ vα +∆h (y, w, x; θ0) [vh] ,

(71)

where

∆α (y, w, x; θ0) =

∫
∂
∂ακ (y, w, x;α0, b)h0(b)

2 db

P (y, w, x;α0, h0)
,

and ∆h (y, w, x; θ0) [vh] =
2
∫
κ (y, w, x;α0, b)h0(b)vh(b)db

P (y, w, x;α0, h0)
.

(72)

For any y, w, x, ∆(y, w, x; θ0) [v] is linear in v. The above defines ∆h as a functional taking a
real-valued function vh as its argument. If instead vh is vector valued, say vh = (vh,1, . . . , vh,d)

′, we
set

∆h (y, w, x; θ0) [vh] =


∆h (y, w, x; θ0) [vh,1]

...
∆h (y, w, x; θ0) [vh,d]

 .
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Throughout, we will utilize the fact that the information equality holds in all submodels (or
paths) passing through θ0. Hence, the negative expected Hessian of the log-likelihood is always
equal to the expected outer product of the gradient (the expected squared pathwise derivative
here). Given that the information equality holds along any path containing θ0, the Fisher inner
product is

⟨v1, v2⟩ = E [∆ (Y,W,X; θ0) [v1] ·∆(Y,W,X; θ0) [v2]] ,

with the associated norm ∥ · ∥ defined by

∥v∥2 = ⟨v, v⟩ = E
[
(∆ (Y,W,X; θ0) [v])

2
]
. (73)

Definition C.1 (Local parameter space and directions). Let ∥ · ∥ be the Fisher norm in (73). The
space V is the closed linear span of Θε−θ0 = {θ − θ0 : θ ∈ Θε} where the closure is computed under
the Fisher norm ∥·∥. The space Vn is the closed linear span of Θn,ε−θ0 = {θ − θ0 : θ ∈ Θn,ε} where
the closure is computed under the Fisher norm ∥ · ∥.

Lemma C.5 shows that the ∥ · ∥ is weaker than ρ. The proof is deferred to Appendix D.3.

Lemma C.5. There is a C∥·∥,ρ ∈ (0,∞) such that ∥θ − θ0∥ ≤ C∥·∥,ρ · ρ (θ, θ0).

Define the best sieve ρ-approximation to θ0 by

θ0,n ∈ argmin
θ∈Θn,ε

ρ (θ, θ0) . (74)

A necessary condition is that θ0,n = (α0, h0,n) for some h0,n ∈ H̃Kn since α0 ∈ A. By Assumption 4.4
(ii) and Lemma C.5, it follows that

∥θ0,n − θ0∥ ≤ C∥·∥,ρρ (θ0,n, θ0) ≤ O
(
K−s/dX

n

)
. (75)

C.3.2 Pathwise derivatives, Riesz representers and their estimators

The pathwise derivative of ϕ(·) in (66) at θ0 in the direction v = (vα, vh) ∈ V is

∂ϕ (θ0)

∂θ
[v] := lim

ε↓0

1

ε
· (ϕ (θ0 + ε · v)− ϕ (θ0))

=

[∫
∂

∂α
T1 (α0, b)h0(b)

2db

]′
vα + 2

∫
T1 (α0, b)h0(b)vh(b) db.

(76)

Since Vn is finite dimensional, by the Riesz Representation Theorem the pathwise derivative ∂ϕ(θ0)
∂θ [·]

has a Riesz representer, v∗n, in the inner product space (Vn, ⟨·, ·⟩). This Riesz representer on Vn is
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termed the sieve Riesz representer of ∂ϕ(θ0)
∂θ [·] and is defined by the relation

∂ϕ (θ0)

∂θ
[v] = ⟨v∗n, v⟩ for all v ∈ Vn, (77)

and
∂ϕ (θ0)

∂θ
[v∗n] = ∥v∗n∥

2 = sup
v∈Vn,∥v∦=0

∣∣∣∂ϕ(θ0)∂θ [v]
∣∣∣2

∥v∥2
. (78)

The sieve Riesz representer has a closed form expression in terms of a “sieve information matrix”.
To describe this closed form, let

Φn =

[ ∫
∂
∂αT1 (α0, b)h0(b)

2db

2
∫
T1 (α0, b)h0(b)ψKn(b) db

]
, (79)

In =

[
In,11 In,12
In,21 In,22

]
and I−1

n =

[
I11
n I12

n

I21
n I22

n

]
, (80)

where with ∆α and ∆h defined in (72),

In,11 = E
[
∆α (Y,W,X; θ0)∆α (Y,W,X; θ0)

′]
In,12 = E

[
∆α (Y,W,X; θ0)∆h (Y,W,X; θ0) [ψKn ]

′]
In,21 = I ′

n,12

In,22 = E
[
∆h (Y,W,X; θ0) [ψKn ] ∆h (Y,W,X; θ0) [ψKn ]

′] .
For v ∈ Vn, there are vα ∈ RdW and λh ∈ RKn such that v = (vα, vh(·)) = (vα,ψKn(·)′λh). Let

λ′ = (v′α, λ
′
h). Then,

∥v∥2 = λ′Inλ. (81)

Using equation (32) of Chen et al. (2014), the sieve Riesz representer, v∗n, is

v∗n =

[
v∗n,α

v∗n,h(·)

]
=

[
v∗n,α

ψKn(·)′λn,h

]
, where λn =

[
v∗n,α

λn,h

]
= I−1

n Φn. (82)

In the above, v∗n,α is comprised of the first dW components of I−1
n Φn. It is straightforward to

show that ∥v∗n∥ is a non-decreasing sequence. The results of Chen et al. (2014) and Chen and Liao
(2014) show that the behavior of ∆ and the sieve Riesz representer essentially pin down the limiting
behavior of ϕ̂n in terms of asymptotic distribution. In particular, under regularity conditions we
will verify later on, the following holds:

√
n ·
[
ϕ
(
θ̂n

)
− ϕ (θ0)

]
∥v∗n∥

=
1√
n

n∑
i=1

∆(Yi,Wi, Xi; θ0)

[
v∗n
∥v∗n∥

]
+ op(1)

The first term on the right has unit second moment for all n and hence by Chebychev’s inequality,
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the rate of convergence of ϕ
(
θ̂n

)
to ϕ (θ0) is Op (∥v∗n∥ /

√
n). Remark C.2 below expands on two

relevant cases for the rate. In addition, if a Lindeberg or Lyapunov condition holds for the first
term on the right above (the summands can be shown to have mean zero), we get

√
n ·
[
ϕ
(
θ̂n

)
− ϕ (θ0)

]
∥v∗n∥

=
1√
n

n∑
i=1

∆(Yi,Wi, Xi; θ0)

[
v∗n

∥v∗n∥

]
+ op(1)

d→ N (0, 1). (83)

Thus, ∥v∗n∥
2 corresponds to the “asymptotic variance” of

√
n ·
[
ϕ
(
θ̂n

)
− ϕ (θ0)

]
.

Remark C.2 (The role of the sieve Riesz representer in determining the rate of convergence). When
∂ϕ(θ0)
∂θ [·] is a bounded functional (in the sense of operator norm) on the Hilbert space (V, ⟨·, ·⟩), the

rate of convergence of ϕ
(
θ̂n

)
to ϕ (θ0) is the parametric 1/

√
n rate. That is, ϕ (θ0) is regularly

estimable. This boundedness occurs if and only if lim supn→∞ ∥v∗n∥ < ∞. Otherwise, if ∂ϕ(θ0)
∂θ [·]

is an unbounded functional (again in the sense of operator norm) on (V, ⟨·, ·⟩), then the rate of
convergence of ϕ

(
θ̂n

)
to ϕ (θ0) is slower than 1/

√
n. In this case, lim supn→∞ ∥v∗n∥ = ∞. For

details, see Lemma 3.3 of Chen and Pouzo (2015).

There are empirical counterparts of all of the objects in (79), (80) and (82). Replacing population
objects with sample analogues, we can first define the empirical counterparts of the Fisher inner
product and norm by

⟨v1, v2⟩n =
1

n

n∑
i=1

∆
(
Yi,Wi, Xi; θ̂n

)
[v1] ·∆

(
Yi,Wi, Xi; θ̂n

)
[v2] ,

∥v∥2n = ⟨v, v⟩n =
1

n

n∑
i=1

(
∆
(
Yi,Wi, Xi; θ̂n

)
[v]
)2
. (84)

Next, we can define the following:

Φ̂n =

[ ∫
∂
∂αT1 (α̂n, b) ĥn(b)

2db∫
T1 (α̂n, b) ĥn(b)ψKn(b) db

]
,

În =

[
În,11 În,12
În,21 În,22

]
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where,

În,11 =
1

n

n∑
i=1

∆α

(
Yi,Wi, Xi; θ̂0

)
∆α

(
Yi,Wi, Xi; θ̂n

)′
În,12 =

1

n

n∑
i=1

∆α

(
Yi,Wi, Xi; θ̂n

)
∆h

(
Yi,Wi, Xi; θ̂n

)
[ψKn ]

′

În,21 = Î ′
n,12

În,22 =
1

n

n∑
i=1

∆h

(
Yi,Wi, Xi; θ̂n

)
[ψKn ] ∆h

(
Yi,Wi, Xi; θ̂n

)
[ψKn ]

′ .

By analogy, for v ∈ Vn, such that v = (vα, vh(·)) = (vα,ψKn(·)′λh), letting λ′ = (v′α, λ
′
h), we get

∥v∥2n = λ′Înλ.

The empirical counterpart to the sieve Riesz representer v∗n is v̂∗n where

v̂∗n =

[
v̂∗n,α

v̂∗n,h(·)

]
=

[
v̂∗n,α

ψKn(·)′λ̂n,h

]
, where λ̂n =

[
v̂∗n,α

λ̂n,h

]
= Î−1

n Φ̂n. (85)

Remark C.3 (On the factor λ̂n). The λ̂n defined in (85) and in (19) are the same object. Hence,
the same notation is used.

C.3.3 Results for asymptotic normality of the leading term

The natural estimator for the asymptotic variance term ∥v∗n∥ in (83) is ∥v̂∗n∥n, where from (84),

∥v̂∗n∥
2
n =

1

n

n∑
i=1

(
∆
(
Yi,Wi, Xi; θ̂n

)
[v̂∗n]
)2
. (86)

We might expect that ∥v̂∗n∥n is a consistent estimator of ∥v∗n∥. An additional pair of assumptions is
required for both this consistent variance estimation claim and asymptotic normality of ϕ (θn)−ϕ (θ0)
as in (83) to be true. To that end, let the pathwise second derivative be defined:

r (y, w, x; θ0) [v1, v2] :=
∂∆(y, w, x; θ0 + ε · v2)

∂τ
[v1]

∣∣∣∣
ε=0

. (87)

Assumption C.1. The following hold:

(i) There is a cI ∈ (0,∞) such that for all n, the smallest eigenvalue of In is greater than or
equal to cI .
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(ii) The following holds:

sup
θ∈Nn,θ̃∈N0,n

∥θ − θ0∥ sup
v∈N0,n:∥v∥=1

E
[∣∣∣r (Y,W,X; θ̃

)
[v, v]− r (Y,W,X; θ0) [v, v]

∣∣∣] = o

(
1

n

)
.

Remark C.4. It can be shown that Lemma C.5 implies that that the largest eigenvalue of In is
bounded above uniformly in n ∈ N by the constant C∥·∥,ρ ∈ (0,∞) defined in Lemma C.5. Hence,
Assumption C.1 (i) restricts the smallest eigenvalue. The main consequence of this assumption is
that the norm ∥ · ∥ and the metric ρ become strongly topologically equivalent.

For parity with the notation used in the proof of Theorem 4.3, define

ϕ̇n(y, w, x) = ∆ (y, w, x; θ0)

[
v∗n

∥v∗n∥

]
,

Vϕ,n = ∥v∗n∥ ,

V̂ϕ,n = ∥v̂∗n∥n .

(88)

Theorem C.1. Suppose Assumptions 2.1, 2.2, 4.1-4.7 and C.1 all hold. Then, R1,n in (55) satisfies

√
nR1,n

Vϕ,n
=

√
n ·
[
ϕ
(
θ̂n

)
− ϕ (θ0)

]
Vϕ,n

=
1√
n

n∑
i=1

ϕ̇n (Yi,Wi, Xi) + op(1)
d→ N (0, 1). (89)

Furthermore, Vϕ,n is non-decreasing and there exists Vϕ ∈ (0,∞) such that

lim
n→∞

Vϕ,n = Vϕ. (90)

In addition
V̂ϕ,n
Vϕ,n

p→ 1, (91)

so that by Slutsky’s Theorem, √
nR1,n

V̂ϕ,n

d→ N (0, 1). (92)

Proof of Theorem C.1. Verification of Assumption 2.1 of Chen and Liao (2014) is the content of
Lemma C.6 (see also Remark C.5). Verification of Assumption 2.2 of Chen and Liao (2014)
Lemma C.7 (see also Remark C.6). Verification of Assumption 2.3 of Chen and Liao (2014) is
the content of Lemma C.8. Therefore, (89) follows as a direct consequence of Lemma 2.1 of Chen
and Liao (2014). Finally, Assumption 3.3 of Chen and Liao (2014) is the content of Lemma C.9.
Therefore, (91) holds by Corollary 3.3 (2) of Chen and Liao (2014). (92) follows from (89), (91)
and Slutsky’s Theorem. The remaining result (90) is the content of Lemma C.11.

Lemma C.6. Suppose Assumptions 2.1, 2.2, 4.1-4.7 all hold. Then
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(i) The following condition holds:

supθ∈Nn

∣∣∣ϕ(θ)− ϕ (θ0)− ∂ϕ(θ0)
∂θ [θ − θ0]

∣∣∣
∥v∗n∥

= o
(
n−1/2

)
. (93)

(ii) The following two (mutually exclusive) conditions both hold:

lim sup
n→∞

∥v∗n∥ = ∞ and
√
n ·

∣∣∣∂ϕ(θ0)∂θ [θ − θ0]
∣∣∣

∥v∗n∥
= o(1), (94)

or lim sup
n→∞

∥v∗n∥ <∞ and
√
n · ∥v∗ − v∗n∥ · ∥θ0,n − θ0∥ = o(1). (95)

Proof of Lemma C.6. See Appendix D.4.1.

Remark C.5. Assumption 2.1 of Chen and Liao (2014) has three parts. The conditions verified
in Lemma C.6 correspond to parts (ii) and (iii) of that assumption. Part (i) of Assumption 2.1
in Chen and Liao (2014) has two conditions. First, ∂ϕ(θ0)

∂θ [v] is required to be a linear functional,
which is immediate from its definition in (76). The second condition is that the norm ∥ · ∥ satisfies
∥v∗n∥ / ∥v∗n∥sd = O(1) where ∥ · ∥sd is a “standard deviation norm” (see Chen and Liao (2014) for the
definition of this norm). In the case of maximum likelihood, ∥ · ∥sd is exactly equal to the Fisher
norm, which we have defined ∥ · ∥ to be. Hence, this second condition is satisfied by definition.

Lemma C.7. Suppose Assumptions 2.1, 2.2, 4.1-4.7 and C.1 all hold. Then the following also hold:

(i) The functional v 7→ µn {∆(·; θ0) [v]} is linear in v ∈ V.

(ii) supθ∈Nn

∣∣∣µn {∆(·; θ)
[

v∗n
∥v∗n∥

]
−∆(·; θ0)

[
v∗n

∥v∗n∥

]}∣∣∣ = op
(
n−1/2

)
.

(iii) The following holds:

sup
θ∈Nn

∣∣∣∣∣E [ℓ (Y,W,X; θ0)− ℓ(Y,W,X; θ)]− ∥θ − θ0∥2

2

∣∣∣∣∣ = o
(
n−1

)
Proof of Lemma C.7. See Appendix D.4.3.

Remark C.6. In Lemma C.7 conditions (ii) and (iii) correspond to Assumption 2.2 (ii)′ and 2.2
(iii)′′′ of Chen and Liao (2014) respectively, each of which are sufficient conditions for the original
Assumption 2.2 (ii) and (iii) respectively.

Lemma C.8. Suppose Assumptions 2.1, 2.2, 4.1-4.7 and C.1 all hold. Then,

√
nµn

{
∆(·; θ0)

[
v∗n
∥v∗n∥

]}
d→ N (0, 1). (96)

Proof of Lemma C.8. See Appendix D.4.4.
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Lemma C.9. Suppose Assumptions 2.1, 2.2, 4.1-4.7 and C.1 all hold. Then the following hold

(i)

sup
θ∈Nn,v1,v2∈Vn:∥v1∥=∥v2∥=1

|E [∆(Y,W,X; θ) [v1] ∆(Y,W,X; θ) [v2]

−∆(Y,W,X; θ0) [v1] ∆ (Y,W,X; θ0) [v2]]| = o(1).

(ii)
sup

θ∈Nn,v1,v2∈Vn:∥v1∥=∥v2∥=1
|µn {∆(Y,W,X; θ) [v1] ∆(Y,W,X; θ) [v2]}| = op(1).

Lemma C.10 (Proof of Lemma C.9). See Appendix D.4.5.

Lemma C.11. Suppose Assumptions 2.1, Assumption 4.6, Assumption 4.7 and Assumption C.1
(i) all hold. Then there is Vϕ ∈ (0,∞) such that limn→∞ Vϕ,n = Vϕ.

Proof of Lemma C.11. See Appendix D.4.6.

C.4 Consistent variance estimation

Theorem C.2. Suppose Assumptions 2.1, 2.2, 4.1-4.7 and C.1 all hold. Then V̂τ,n in (18) satisfies:

V̂τ,n
Vτ,n

p→ 1. (97)

Proof of Theorem C.2. Write V̂τ,n as

V̂τ,n =
1

n

n∑
i=1

{
∆
(
Yi,Wi, Xi; θ̂n

)
[v̂∗n] + T̃2,n (Wi, Xi)

}2
,

where

T̃2,n(w, x) = T̂2,n(w, x)−
1

n

n∑
i=1

T̂2,n (Wi, Xi) .

Next, write
Vτ,n = Vϕ,n +Var [T2,0(W,X)] + 2Cov

[
ϕ̇n(Y,W,X), T2,0(W,X)

]
.

By Lemma C.12 below, E
[
ϕ̇n (Y,W,X)

∣∣∣W,X] = 0 and so,

Cov
[
ϕ̇n(Y,W,X), T2,0(W,X)

]
= 0.

Therefore,

Vτ,n = Vϕ,n + V2,0,

where V2,0 = Var [T2,0(W,X)] .
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As before, set

V̂ϕ,n =
1

n

n∑
i=1

(
∆
(
Yi,Wi, Xi; θ̂n

)
[v̂∗n]
)2

and for ease of notation, define

V̂2,n =
1

n

n∑
i=1

T̃2,n (Wi, Xi)
2 =

1

n

n∑
i=1

T̂2,n (Wi, Xi)
2 −

 1

n

n∑
j=1

T̂2,n (Wi, Xi)

2

, (98)

and finally,

Ĉn =
1

n

n∑
i=1

∆
(
Yi,Wi, Xi; θ̂n

)
[v̂∗n] T̃2,n (Wi, Xi) . (99)

Therefore,
V̂τ,n = V̂ϕ,n + V̂2,n + 2Ĉn.

By (91) of Theorem C.1, V̂ϕ,n/Vϕ,n
p→ 1. By Lemma C.13, V̂2,n

p→ V2,0, and so V̂2,n/V2,0
p→ 1.

By Lemma C.14, Ĉn/
√
Vϕ,n

p→ 0. Therefore,

V̂τ,n
Vτ,n

=
V̂ϕ,n + V̂2,n + 2Cn

Vϕ,n + V2,0

=
Vϕ,n · (1 + op(1)) + V2,0 · (1 + op(1)) +

√
Vϕ,n · op(1)

Vϕ,n + V2,0
= 1 + op(1).

Lemma C.12. Given any θ ∈ Θ and v ∈ V, for all w, x

J∑
y=0

P (y, w, x; θ) ·∆(y, w, x; θ)[v] = 0. (100)

As a consequence, given any function T (w, x) that depends only on (w, x),

ν0 [∆ (·; θ0) [v] · T (·)] = 0 for any v ∈ V. (101)

Proof of Lemma C.12. For any θ, and any w, x,
∑J

y=0 P (y, w, x; θ) = 1. This implies that along
any path,

∑J
y=0(∂/∂ε)P (y, w, x; θ + εv) |ε=0 = 0. Hence,

J∑
y=0

P (y, w, x; θ) ·∆(y, w, x; θ)[v] =
J∑

y=0

P (y, w, x; θ) · (∂/∂ε)P (y, w, x; θ + εv) |ε=0

P (y, w, x; θ)

=

J∑
y=0

(∂/∂ε)P (y, w, x; θ + εv) |ε=0

= 0.
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This proves (100). Next, applying (100) with θ = θ0, given any function h(w, x) that depends only
on (w, x),

ν0 [∆ (·; θ0) [v] · T (·)] =
∫  J∑

y=0

P (y, w, x; θ0) ·∆(y, w, x; θ0) [v]


︸ ︷︷ ︸

=0

· T (w, x)G0(dw,dx) = 0.

Lemma C.13. Let Assumptions 2.1, 4.1 and 4.6 hold. If ρ
(
θ̂n, θ0

)
p→ 0, then V̂2,n in (98) satisfies

V̂2,n
p→ V2,0.

Proof of Lemma C.13. See Appendix D.5.1.

Lemma C.14. Suppose Assumptions 2.1, 2.2, 4.1-4.7 and C.1 all hold. Then, Ĉn in (99) satisfies
Ĉn/

√
Vϕ,n

p→ 0.

Proof of Lemma C.14. See Appendix D.5.2.

D Proofs of additional results used for asymptotic normality and
consistent variance estimation

D.1 Proof of Lemma C.1

Proof of Lemma C.1. To see (54), write τ̂n = νn

[
T̂2,n

]
and τ0 = ν0 [T2,0]. Hence

τ̂n − τ0 = νn

[
T̂2,n

]
− ν0 [T2,0]

= ν0

[
T̂2,n

]
− ν0 [T2,0] + (νn − ν0)

[
T̂2,n

]
= ν0

[
T̂2,n

]
− ν0 [T2,0] + (νn − ν0) [T2,0] + (νn − ν0)

[
T̂2,n − T2,0

]
= ν0

[
T̂2,n

]
− ν0 [T2,0] + µn [T2,0] + µn

[
T̂2,n − T2,0

]
.

Using (53) and Fubini’s Theorem,

ν0

[
T̂2,n

]
=

∫
T̂2,n(w, x)G0(dw,dx)

=

∫ {∫
t (w, x; α̂n, b) ĥn(b)

2 db

}
G0(dw,dx)

=

∫ {∫
t (w, x; α̂n, b)G0(dw,dx)

}
ĥn(b)

2 db

=

∫
T1 (α̂n, b) ĥn(b)

2 db.
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Similarly,

ν0 [T2,0] =

∫
T2,0(w, x)G0(dw,dx)

=

∫ {∫
t (w, x;α0, b)h0(b)

2 db

}
G0(dw,dx)

=

∫ {∫
t (w, x;α0, b)G0(dw,dx)

}
h0(b)

2 db

=

∫
T1 (α0, b)h0(b)

2 db.

Therefore,

τ̂n − τ0 =

∫
T1 (α̂n, b) ĥn(b)

2 db−
∫
T1 (α0, b)h0(b)

2 db+ µn [T2,0] + µn

[
T̂2,n − T2,0

]
= R1,n +R2,n +R3,n.

Hence, (54) follows.

D.2 Proofs of Lemmas C.2 and C.3

Proof of Lemma C.2. Square integrability of T ∗ is immediate from Assumption 4.6. We start with
the proof that T ∗ is indeed an envelope function for both T and T∗ and then move onto proving
that both families are Donsker classes. Under Assumption 4.6, and given any α, b,

|t(w, x, α, b)| ≤ |t(w, x, α, b)|+ |t(w, x, α, b)− t(w, x, α, b)|

≤ |t(w, x, α, b)|+ T (w, x)
(
∥α− α∥22 + ∥b− b∥22

)1/2
≤ T

∗
(w, x).

The above display shows that T ∗ is an envelope function for T since w, x, α, b are arbitrary. For
fixed w, x, α, integrate the far left with respect to any probability measure F ∈ PM(B) to see that
T
∗ is also an envelope function for T∗.

Under Assumptions 2.1, 4.1 and 4.6, T is a G0-Donsker class — see Example 19.7 in van der
Vaart (1998). By Theorems 2.10.1 and 2.10.3 of van der Vaart and Wellner (1996), the convex hull
of T ,

conv(T ) =


m∑
k=1

ωkt (·;α, bk) :
m∑
j=1

ωj = 1, ωk ≥ 0, bk ∈ B for each k = 1, . . . ,m,m ∈ N, α ∈ A

 ,

is also G0-Donsker. B is a metric space, and hence (trivially) metrizable. By Theorem 15.10 of
Aliprantis and Border (2006), under the topology of weak convergence, the set of finitely supported
discrete probability measures on B is dense in the set of all probability measures on B, i.e. PM(B).
Thus, given any F ∈ PM(B), there is a sequence of finitely supported discrete probability measures,
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Fm, such that Fm ⇝ F , where ⇝ denotes weak convergence. Fix α ∈ A and denote:

t∗,m(w, x) =

∫
t(w, x;α, b)Fm(db)

t∗(w, x) =

∫
t(w, x;α, b)F (db)

Then t∗ ∈ T∗ and t∗,m ∈ conv(T ). Under Assumption 4.6, t(w, x;α, b) is a continuous function of
b for any w, x and α. By Assumption 2.1, B is compact and so, t(w, x;α, b) is a bounded function
in b. By the Portmanteau Lemma, for any w, x,

lim
m→∞

t∗,m(w, x) = lim
m→∞

∫
t(w, x;α, b) Fm(db) =

∫
t(w, x;α, b) F (db) = t∗(w, x).

Thus, given any t∗ ∈ T∗, there exists a sequence t∗,m in conv(T ) such that t∗,m → t∗ pointwise in
w, x.

The sequence t∗,m(w, x) also converges to t∗(w, x) in L2 (G0). To see this, we have |t∗,m| ≤
∣∣∣T ∗
∣∣∣

and the upper bounding function has already been argued to be square integrable with respect to G0.
By the Dominated Convergence Theorem, our previous pointwise convergence (in w, x) arguments
then imply that

lim
m→∞

∫
(t∗,m(w, x)− t∗(w, x))

2G0(dw,dx) = 0.

Therefore, t∗,m → t∗ pointwise and in L2 (G0) as functions of w, x. Since the claim was established
for arbitrary α ∈ A, by Theorem 2.10.2 of van der Vaart and Wellner (1996), T∗ is a G0-Donsker
class.

Proof of Lemma C.3. Since ρ
(
θ̂n, θ0

)
p→ 0, given any subsequence {nk}, there is a further subse-

quence {nkm} such that15

ρ
(
θ̂nkm

, θ0

)
a.s.→ 0 as m→ ∞. (102)

Thus, there is an event Z ({nkm}) of Pr-probability16 1 such that on Z ({nkm}),

lim
m→∞

ρL2

(∣∣∣ĥnkm

∣∣∣ , h0) = 0. (103)

Thus, on the event Z ({nkm}) the density ĥ2nkm
converges to h20 in the Hellinger topology (the

topology of L2 convergence of root densities). The Hellinger topology is stronger than the Total
Variation topology (equation (8) of Gibbs and Su (2002, p. 428)) and the Total Variation topology
is stronger than the weak topology (or the Lévy-Prohorov topology, see Gibbs and Su (2002, p.
428) or equation (2.24) of Huber and Ronchetti (2009, p. 36)). Thus, the probability measure on B
associated with ĥ2nkm

converges weakly to the probability measure associated with h20. Let Ĥnkm
, H0

15. Convergence in probability is equivalent to every subsequence having an almost surely convergent subsubse-
quence. See for example Theorem 2.3.2 of Durrett (2019).

16. To remind the reader, Pr is the underlying probability measure against which all probability and random
variables are defined.
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be the probability measures on A× B defined by

Ĥnkm
(A×B) = I

{
α̂nkm

∈ A
}
×
∫
B
ĥnkm

(b)2 db,

H0(A×B) = I {α0 ∈ A} ×
∫
B
h0(b)

2 db.

Combining Euclidean (almost sure) convergence of α̂nkm
to α0 implied by (102) with weak conver-

gence of (the measures associated with) ĥ2nkm
to h20 implied by (103), it follows that Ĥnkm

converges
weakly to H0. Note that we can write

T̂2,nkm
(w, x) =

∫
t(w, x;α, b) Ĥkm(dα,db),

T2,0(w, x) =

∫
t(w, x;α, b) H0(dα,db).

Under Assumption 4.6, t(w, x;α, b) is a continuous function of b for any w, x and α. By Assump-
tions 2.1 and 4.1, A and B are both compact (so that A×B is compact in the Euclidean norm) and
so, t(w, x;α, b) is a bounded function in b. By the Portmanteau Lemma, for any w, x, on the event
Z ({nkm}),

lim
m→∞

T̂2,nkm
(w, x) = lim

m→∞

∫
t(w, x;α, b) Ĥkm(dα,db) =

∫
t(w, x;α, b) H0(dα,db) = T2,0(w, x).

Let T ∗ be as defined in (64). Under Assumption 4.6,
∫ (

T
∗
)2

dG0 < ∞ and |t(w, x, α, b)| ≤

T
∗
(w, x) given any w, x, α, b as argued in the proof of Lemma C.2. Integrating against ĥ2nkm

and

h20 respectively, we get
∣∣∣T̂2,nkm

(w, x)
∣∣∣ ≤ T

∗
(w, x) and |T2,0(w, x)| ≤ T

∗
(w, x). By the Dominated

Convergence Theorem, on the event Z ({nkm}),

lim
m→∞

∫ (
T̂2,nkm

(w, x)− T2,0(w, x)
)2
G0(dw,dx) = 0.

Since the event Z ({nkm}) has Pr-probability 1, it follows that∫ (
T̂2,nkm

(w, x)− T2,0(w, x)
)2
G0(dw,dx)

a.s.→ 0.

Thus, every subsequence {nk} has a further subsequence {nkm} on which T̂2,nkm
(·) converges to T2,0

in L2 (G0) almost surely. By Theorem 2.3.2 of Durrett (2019), it follows that∫ (
T̂2,n(w, x)− T2,0(w, x)

)2
G0(dw,dx)

p→ 0,

which is exactly (65).
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D.3 Proof of Lemma C.5

Proof of Lemma C.5. Set v = θ − θ0 and write v = (vα, vh). Then

∥v∥2 = E
[(
∆α (Y,W,X; θ0)

′ vα +∆h (Y,W,X; θ0) [vh]
)2]

≤ E
[(∣∣∆α (Y,W,X; θ0)

′ vα
∣∣+ |∆h (Y,W,X; θ0) [vh]|

)2]
.

By Jensen’s inequality,

∥v∥2 ≤ 2
{
E
[(
∆α (Y,W,X; θ0)

′ vα
)2]

+ E
[
(∆h (Y,W,X; θ0) [vh])

2
]}

. (104)

For the first term in (104), by the Cauchy-Schwarz inequality,

E
[(
∆α (Y,W,X; θ0)

′ vα
)2] ≤ E

[
∥∆α (Y,W,X; θ0)∥22

]
· ∥vα∥22 . (105)

For the second term in (104),

E
[
(∆h (Y,W,X; θ0) [vh])

2
]
= 4E

[{∫
κ (Y,W,X;α0, b)h0(b)vh(b) db

P (Y,W,X;α0, h0)

}2
]

≤ 4E
[

1

P (Y,W,X;α0, h0)
2

]{∫
h0(b)

2db

}{∫
vh(b)

2 db

}
.

Apply the Cauchy-Schwarz inequality and use the fact that κ(·) ∈ (0, 1) to get

E
[
(∆h (Y,W,X; θ0) [vh])

2
]
≤ 4E

[
1

P (Y,W,X;α0, h0)
2

]{∫
h0(b)

2db

}{∫
vh(b)

2 db

}
. (106)

Therefore, define C∥·∥,ρ by

C2
∥·∥,ρ = 2max

{
E
[
∥∆α (Y,W,X; θ0)∥22

]
, 4E

[
1

P (Y,W,X;α0, h0)
2

]
·
∫
h0(b)

2db

}
. (107)

Combine (104), (105), and (106) with (107) to get

∥v∥2 ≤ C2
∥·∥,ρ ·

(
∥vα∥22 +

∫
vh(b)

2 db

)
.

Since v = θ − θ0, the conclusion of Lemma C.5 follows.
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D.4 Proofs of Lemmas required for Theorem C.1

D.4.1 Proof of Lemma C.6

Proof of Lemma C.6. Part (i): We wish to show

√
n
supθ∈Nn

∣∣∣ϕ(θ)− ϕ (θ0)− ∂ϕ(θ0)
∂θ [θ − θ0]

∣∣∣
∥v∗n∥

= o(1). (108)

Since ∥v∗n∥ is non-decreasing, it suffices to show

√
n sup

θ∈Nn

∣∣∣∣ϕ(θ)− ϕ (θ0)−
∂ϕ (θ0)

∂θ
[θ − θ0]

∣∣∣∣ = o(1). (109)

Given θ = (α, h), with some algebra using (66) and (76),

ϕ(θ)− ϕ (θ0)−
∂ϕ (θ0)

∂θ
[θ − θ0]

=

∫ {
T1(α, b)− T1 (α0, b)−

[
∂

∂α
T1 (α0, b)

]′
(α− α0)

}
h0(b)

2 db

+

∫
T1 (α0, b) (h(b)− h0(b))

2 db

+

∫
[T1 (α, b)− T1 (α0, b)]

(
h(b)2 − h0(b)

2
)
db.

(110)

Using Assumption 4.7, a second order Taylor expansion of T1(α, b) around α = α0 gives∫ {
T1(α, b)− T1 (α0, b)−

[
∂

∂α
T1 (α0, b)

]′
(α− α0)

}
h0(b)

2 db

= (α− α0)
′
[∫

∂

∂α∂α
T1 (α̃(b), b) db

]
(α− α0) ,

for a midpoint α̃(b) between α and α0. Thus, for a constant C1 ∈ (0,∞) determined by the maximal
eigenvalue of the Hessian matrix in the display above,∣∣∣∣∫ {T1(α, b)− T1 (α0, b)−

[
∂

∂α
T1 (α0, b)

]′
(α− α0)

}
h0(b)

2 db

∣∣∣∣ ≤ C1 ∥α− α0∥22

≤C1ρ (θ, θ0)
2 .

(111)

Note that the last inequality follows from ρ (θ, θ0)
2 = ∥α− α0∥22 + ρL2 (h, h0)

2.
T1(·) is continuous on A× B, a compact set, and is therefore a bounded function. So,∣∣∣∣∫ T1 (α0, b) (h(b)− h0(b))

2 db

∣∣∣∣ ≤ C2ρL2 (h, h0)
2

≤ C2ρ (θ, θ0)
2 ,

(112)
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where C2 = sup(α,b)∈A×B |T1(α, b)|.
Next, ∣∣∣∣∫ [T1 (α, b)− T1 (α0, b)]

(
h(b)2 − h0(b)

2
)
db

∣∣∣∣
=

∣∣∣∣(α− α0)
′
∫

∂

∂α
T1 (α̃(b), b) (h(b) + h0(b)) (h(b)− h0(b)) db

∣∣∣∣
≤ ∥α− α0∥2 ·

∫ ∥∥∥∥ ∂∂αT1 (α̃(b), b)
∥∥∥∥ |h(b) + h0(b)| |h(b)− h0(b)| db

By continuity of the first derivative (∂/∂α)T1(·) and compactness of A× B, there is a C3 ∈ (0,∞)

such that ∣∣∣∣∫ [T1 (α, b)− T1 (α0, b)]
(
h(b)2 − h0(b)

2
)
db

∣∣∣∣
≤ C3 ∥α− α0∥2

∫
|h(b) + h0(b)| |h(b)− h0(b)|db

(by Cauchy-Schwarz) ≤C3 ∥α− α0∥2
{∫

|h(b) + h0(b)|2 db
}1/2

·
{∫

|h(b)− h0(b)|2 db
}1/2

≤ 2C3 ∥α− α0∥2 ρL2 (h, h0)

since
∫
|h+ h0|2 ≤ 4 by Lemma B.6. By uv ≤

(
u2 + v2

)
/2, we have∣∣∣∣∫ [T1 (α, b)− T1 (α0, b)]

(
h(b)2 − h0(b)

2
)
db

∣∣∣∣ ≤ C3

(
∥α− α0∥22 + ρL2 (h, h0)

2
)

= C3ρ (θ, θ0)
2 .

(113)

Combine (111), (112) and (113) with (110) to get∣∣∣∣ϕ(θ)− ϕ (θ0)−
∂ϕ (θ0)

∂θ
[θ − θ0]

∣∣∣∣ ≤ C4ρ (θ, θ0)
2 , (114)

for C4 = C1 + C2 + C3. Let θ ∈ Nn defined in (70). By definition of Nn,

√
nρ (θ, θ0)

2 ≤
√
nmax

{
K

− 2s
dX

n ,
Kn

n

}
· ζ2n

= max

{√
nK

− 2s
dX

n ,
Kn√
n

}
ζ2n

= o(1).
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where the last line follows by (69). Hence, using (114),

√
n sup

θ∈Nn

∣∣∣∣ϕ(θ)− ϕ (θ0)−
∂ϕ (θ0)

∂θ
[θ − θ0]

∣∣∣∣ ≤ C4 sup
θ∈Nn

√
nρ (θ, θ0)

2

= o(1)

This shows (109), which in turn is sufficient for (108).
Part (ii): Recall that we wish to show either

lim sup
n→∞

∥v∗n∥ = ∞ and
√
n ·

∣∣∣∂ϕ(θ0)∂θ [θ − θ0]
∣∣∣

∥v∗n∥
= o(1),

or lim sup
n→∞

∥v∗n∥ <∞ and
√
n · ∥v∗ − v∗n∥ · ∥θ0,n − θ0∥ = o(1).

Again, since ∥v∗n∥ is non-decreasing and positive, it suffices to show the following respectively:

if lim sup
n→∞

∥v∗n∥ = ∞ then
√
n ·
∣∣∣∣∂ϕ (θ0)∂θ

[θ0,n − θ0]

∣∣∣∣ = o(1), (115)

else, if lim sup
n→∞

∥v∗n∥ <∞ then
√
n · ∥θ0,n − θ0∥ = o(1). (116)

Recall from (76)

∂ϕ (θ0)

∂θ
[θ − θ0] =

[∫
∂

∂α
T1 (α0, b)h0(b)

2db

]′
(α− α0) + 2

∫
T1 (α0, b)h0(b) (h(b)− h0(b)) db.

Applying the triangle and Cauchy-Schwarz inequalities∣∣∣∣∂ϕ (θ0)∂θ
[θ − θ0]

∣∣∣∣ ≤ ∥∥∥∥∫ ∂

∂α
T1 (α0, b)h0(b)

2db

∥∥∥∥
2

∥α− α0∥2

+ 2C2

{∫
h0(b)

2 db

}1/2{∫
(h(b)− h0(b))

2 db

}1/2

,

where as before, C2 = sup(α,b)∈A×B |T1(α, b)|. In addition,
∫
h20 = 1. Therefore, using continuity of

the first derivative (∂/∂α)T1(·) and compactness of A×B to bound the first component of the sum
above, and applying it to θ0,n in (74), we get that for some C5 ∈ (0,∞),∣∣∣∣∂ϕ (θ0)∂θ

[θ0,n − θ0]

∣∣∣∣ ≤ C5ρ (θ0,n, θ0) .

Furthermore, using the inequality (75), we have ∥θ0,n − θ0∥ ≤ C∥·∥,ρ · ρ (θ0,n, θ0) for positive and
finite C∥·∥,ρ. Then, it suffices to show

√
n · ρ (θ0,n, θ0) = o(1) for both (115) and (116). To that

end, by Assumption 4.4 (i),
√
nρ (θ0,n, θ0) = O

(
K

−s/dX
n

)
= o(1), since

√
n · K−s/dX

n = o(1) by
hypothesis. As previously argued, (115) and (116) imply (94) and (95) respectively.
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D.4.2 A useful consequence of Assumption C.1 (i)

Lemma D.1. Let Assumption 4.4 (i) and Assumption C.1 (i) hold. Take any n ∈ N and v ∈ Vn

with v = (vα, vh(·)) = (vα, λ
′
hψKn(·)). Then, with cI ∈ (0,∞) as defined in Assumption C.1 (i),

∥v∥ ≥
√
cI ·max {∥vα∥2 , ∥vh∥2} , (117)

where ∥vh∥22 =
∫
v2h.

Proof of Lemma D.1. Take any n ∈ N and v ∈ Vn with v = (vα, vh(·)) = (vα, λ
′
hψKn(·)). By

orthonormality of ψKn , ∥vh∥22 = ∥λh∥22. Therefore,

∥v∥2 =
(
v′α, λ

′
h

)
In

(
vα

λh

)
≥ cI ·

(
∥vα∥22 + ∥λh∥22

)
= cI ·

(
∥vα∥22 + ∥vh∥22

)
≥ cI ·max

{
∥vα∥22 , ∥vh∥

2
2

}
.

Thus, (117) follows.

D.4.3 Proof of Lemma C.7

In this subsection and the next, define

u∗n =
v∗n
∥v∗n∥

. (118)

Here, we verify each of the three parts of Assumption 2.2 of Chen and Liao (2014).

Proof of Lemma C.7. Part (i) requires the functional µn {∆(Y,W,X; θ0) [v]} to be linear in v ∈ V.
This is immediately satisfied since ∆ in (71) is linear in v and f 7→ µnf is linear.

Part (ii) supθ∈Nn
|µn {∆(·; θ) [u∗n]−∆(·; θ0) [u∗n]}| = op

(
n−1/2

)
. By (138) in Lemma D.4, given

any θ1, θ2 ∈ Θ and v ∈ V,

|∆(y, w, x; θ1) [v]−∆(y, w, x; θ2) [v]| ≤ U∆,1(y, w, x) ·max {∥vα∥2 , ∥vh∥2} · ρ (θ1, θ2)

+ U∆,2(y, w, x) ·max
{
∥vα∥32 , ∥vh∥

3
2

}
ρ (θ1, θ2)

2 ,

for non-negative functions U∆,j , j ∈ {1, 2} that are square-integrable against ν0 under Assump-
tion 4.2. Hence, squaring and dividing through by ∥v∥, we get that for any u ∈ V with ∥u∥ = 1,

|∆(y, w, x; θ1) [u]−∆(y, w, x; θ2) [u]|2

≤ 2 max
j=1,2

{
U∆,j(y, w, x)

2
}
×

×max
{
∥uα∥2 , ∥uh∥2 , ∥uα∥

3
2 , ∥uh∥

3
2

}2
×

×max
{
ρ (θ1, θ2)

2 , ρ (θ1, θ2)
4
}
.
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Hence,

|∆(y, w, x; θ1) [u]−∆(y, w, x; θ2) [u]|2 ≤ C∗ · U∆,∗(y, w, x)
2 ·max

{
ρ (θ1, θ2)

2 , ρ (θ1, θ2)
4
}
, (119)

for a constant C∗ > 0 and a function U∆,∗ that is square-integrable against ν0.
For δ ∈ (0, 1], denote the class of functions

Dn,δ = {∆(·; θ) [u∗n]−∆(·; θ0) [u∗n] : θ ∈ Nn, ρ (θ, θ0) ≤ δ} . (120)

By (119) and Theorem 2.7.11 in van der Vaart and Wellner (1996)

logN[] (ε,Dn,δ,L2 (ν0)) ≤ logN

(
ε

C∗,1
,ΘKn,δ, ρ

)
,

where

C2
∗,1 = C∗ν0

[
U

2
∆,∗

]
,

and ΘKn,δ =
{
θ ∈ Θ2

Kn
: ρ (θ, θ0) ≤ δ

}
.

Effectively the same arguments as those used to establish (50) in Lemma B.15 show that

logN

(
ε

C∗,1
,ΘKn,δ, ρ

)
≤ (dW +Kn) ·max

{
0, log

(
3C∗,1δ

ε

)}
.

and hence
logN[] (ε,Dn,δ,L2 (ν0)) ≤ (dW +Kn) ·max

{
0, log

(
3C∗,1δ

ε

)}
.

Therefore,

∫ ∞

0

√
logN[] (ε,Dn,δ,L2 (ν0)) dε ≤ 2 (dW +Kn) ·

∫ 3C∗,1δ

0

√
log

(
3C∗,1δ

ε

)
dε

=

√
π

2
· (dW +Kn) <∞.

where the last equality follows from (158) in Lemma F.4.
In addition, with u = u∗n, taking suprema and then integrating,

E

[
sup

θ1,θ2∈Nn:ρ(θ1,θ2)≤δ
|∆(Y,W,X; θ1) [u

∗
n]−∆(Y,W,X; θ2) [u

∗
n]|

2

]
≤ C∗ · E

[
U∆,∗(Y,W,X)

]
·max

{
δ2, δ4

}
.
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As δ ↓ 0, since δ2 ≥ δ4 (as soon as δ ≤ 1), we further have

E

[
sup

θ1,θ2∈Nn:ρ(θ1,θ2)≤δ
|∆(Y,W,X; θ1) [u

∗
n]−∆(Y,W,X; θ2) [u

∗
n]|

2

]
≤ C∗ · E

[
U∆,∗(Y,W,X)

]
δ2.

Thus, the conditions of Theorem 3 in Chen et al. (2003) (or Lemma 4.2 in Chen (2007)) are met,
which implies that

sup
θ∈Nn

µn {∆(·; θ) [u∗n]−∆(·; θ0) [u∗n]} = op

(
1√
n

)
.

This proves part (ii) of Lemma C.7.
Part (iii): Let θ ∈ Nn, and let v = θ − θ0. By a second order (pathwise) Taylor expansion,

ℓ(y, w, x; θ) = ℓ (y, w, x; θ0) + ∆ (y, w, x; θ0) [v] +
1

2
r (y, w, x; θ0) [v, v]

+
1

2
[r (y, w, x; (1− ε̃) · θ0 + ε̃ · θ) [v, v]− r (y, w, x; θ0) [v, v]]

where ε̃ = ε̃ (y, w, x; θ, θ0) ∈ (0, 1). By Lemma C.12 and Lemma D.2 (below)

E [∆ (Y,W,X; θ0) [v]] = 0

E [r (Y,W,X; θ0) [v, v]] = E
[
− (∆ (Y,W,X; θ0) [v])

2
]
= − ∥v∥2.

Hence,

E [ℓ (Y,W,X; θ0)− ℓ(Y,W,X; θ)]

= − E [∆ (y, w, x; θ0) [v]]−
1

2
E [r (y, w, x; θ0) [v, v]]

+
1

2
E [r (y, w, x; (1− ε̃) · θ0 + ε̃ · θ) [v, v]− r (y, w, x; θ0) [v, v]]

=
∥v∥2

2
+

∥v∥2

2
E [r (y, w, x; (1− ε̃) · θ0 + ε̃ · θ) [u, u]− r (y, w, x; θ0) [u, u]]

where u = v/∥v∥. Therefore,

E [ℓ (Y,W,X; θ0)− ℓ(Y,W,X; θ)]− ∥v∥2

2

=
∥v∥2

2
E [r (Y,W,X; (1− ε̃) · θ0 + ε̃ · θ) [u, u]− r (Y,W,X; θ0) [u, u]]
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Substituting v = θ − θ0, bounding both sides and using Assumption C.1 (ii),

sup
θ∈Nn

∣∣∣∣∣E [ℓ (Y,W,X; θ0)− ℓ(Y,W,X; θ)]− ∥θ − θ0∥2

2

∣∣∣∣∣
= sup

θ∈Nn,θ̃∈N0,n

∥θ − θ0∥2

2
sup

u∈N0,n:∥u∥=1
E
[∣∣∣r (Y,W,X; θ̃

)
[u, u]− r (Y,W,X; θ0) [u, u]

∣∣∣]
= o

(
1

n

)
.

This proves part (iii) of Lemma C.7.

Lemma D.2. Given any θ ∈ Θ and v1, v2 ∈ V, for all w, x,

J∑
y=0

P (y, w, x; θ) ·r(y, w, x; θ) [v1, v2] = −
J∑

y=0

P (y, w, x; θ) ·∆(y, w, x; θ) [v1] ·∆(y, w, x; θ) [v2] . (121)

Proof of Lemma D.2. For any θ, and any w, x,
∑J

y=0 P (y, w, x; θ) = 1. This implies that along any
path,

J∑
y=0

(∂/∂ε)P (y, w, x; θ + εv) |ε=0 = 0

J∑
y=0

(∂/∂ε2) (∂/∂ε1)P (y, w, x; θ + ε1v1 + ε2v2) |ε1=0,ε2=0 = 0

Hence,

J∑
y=0

P (y, w, x; θ) · r(y, w, x; θ) [v1, v2]

= −
J∑

y=0

P (y, w, x; θ) ·∆(y, w, x; θ) [v1] ·∆(y, w, x; θ) [v2]

+

J∑
y=0

P (y, w, x; θ) · (∂/∂ε2) (∂/∂ε1)P (y, w, x; θ + ε1v1 + ε2v2) |ε1=0,ε2=0

P (y, w, x; θ)

= −
J∑

y=0

P (y, w, x; θ) ·∆(y, w, x; θ) [v1] ·∆(y, w, x; θ) [v2] ,

which proves (121).

D.4.4 Proof of Lemma C.8

Proof of Lemma C.8. Let
∆0,n(y, w, x) = ∆ (Y,W,X; θ0) [u

∗
n] , (122)
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where as in (118), u∗n = v∗n/ ∥v∗n∥. Then, we can rewrite (96) as the requirement that

√
nµn {∆0,n}

d→ N (0, 1). (123)

For this, it is sufficient to verify Lindeberg’s condition, which in this context is:

lim
n→∞

ν0
[
∆2

0,n · I
{
|∆0,n| > ε

√
n
}]

= 0 for every ε > 0. (124)

Lemma D.3 shows (in (137)) that the following bound holds for any v ∈ V with v = (vα, vh):

|∆(y, w, x; θ0) [v]| ≤ U∆(y, w, x) ·max {∥vα∥2 , ∥vh∥2} .

Under Assumption 4.2, the function U∆(·) is square-integrable under ν0. By (117) of Lemma D.1,
given any n ∈ N and v ∈ Vn, ∣∣∣∣∆(y, w, x; θ0)

[
v

∥v∥

]∣∣∣∣ ≤ U∆(y, w, x)√
cI

.

Therefore, given any n ∈ N and ε > 0,

∆2
0,n · I

{
|∆0,n| > ε

√
n
}
≤
U2
∆

cI
· I {|U∆| > ε

√
cIn} .

Therefore, by ν0-integrability of U∆ and dominated convergence, i.e.

lim
n→∞

ν0
[
∆2

0,n · I
{
|∆0,n| > ε

√
n
}]

= 0 for every ε > 0.

Hence, (124) holds which implies (123), i.e. (96).

D.4.5 Proof of Lemma C.9

Proof of Lemma C.9. Part (i):

∆(·; θ) [v1] ∆(·; θ) [v2]−∆(·; θ0) [v1] ∆ (·; θ0) [v2]

= ∆(·; θ) [v1] ∆(·; θ) [v2]−∆(·; θ) [v1] ∆ (·; θ0) [v2]

+ ∆(·; θ) [v1] ∆ (·; θ0) [v2]−∆(·; θ0) [v1] ∆ (·; θ0) [v2]

= ∆(·; θ) [v1] · {∆(·; θ) [v2]−∆(·; θ0) [v2]}

+∆(·; θ0) [v2] {∆(·; θ) [v1]−∆(·; θ0) [v1]} .
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Thus, by the triangle inequality

|∆(·; θ) [v1] ∆(·; θ) [v2]−∆(·; θ0) [v1] ∆ (·; θ0) [v2]|

≤ |∆(·; θ) [v1]| |∆(·; θ) [v2]−∆(·; θ0) [v2]|

+ |∆(·; θ0) [v2]| |∆(·; θ) [v1]−∆(·; θ0) [v1] ∆ (·; θ0) [v2]|

By Lemma D.3 and Lemma D.4, we have respectively

|∆(·; θ)[v]| ≤ U∆(·) ·max {∥vα∥2 , ∥vh∥2} ,

|∆(·; θ)[v]−∆(·; θ0) [v]| ≤ U∆,1(·) ·max {∥vα∥2 , ∥vh∥2} · ρ (θ, θ0)

+ U∆,2(·) ·max
{
∥vα∥32 , ∥vh∥

3
2

}
ρ (θ1, θ2)

2 ,

so that with vj = (vα,j , vh,j) for j ∈ {1, 2}

|∆(·; θ) [v1] ∆(·; θ) [v2]−∆(·; θ0) [v1] ∆ (·; θ0) [v2]|

≤ 2U∆(·) max
j=1,2

{
U∆,j(·)

}
× max

j=1,2

{
∥vα,j∥2 , ∥vh,j∥2

}
× max

j=1,2

{
∥vα,j∥2 , ∥vh,j∥2 , ∥vα,j∥

3
2 , ∥vh,j∥

3
2

}
×max

{
ρ (θ, θ0) , ρ (θ, θ0)

2
}

Thus, for ∥vj∥ = 1, the terms containing ∥vα,j∥2 , ∥vh,j∥2 are all bounded and collecting the envelope
functions into one term, we have

|∆(·; θ) [v1] ∆(·; θ) [v2]−∆(·; θ0) [v1] ∆ (·; θ0) [v2]| ≤ C∗U∆,∗(·)max
{
ρ (θ, θ0) , ρ (θ, θ0)

2
}
, (125)

where C∗ is a finite, positive constant and

U∆,∗(·) = U∆(·) max
j=1,2

{
U∆,j(·)

}
.

Now, U∆(·) and U∆,j(·) for j ∈ {1, 2} are all square-integrable against ν0 by Assumption 4.2 and
hence, U∆,∗(·) is ν0-integrable by the Cauchy-Schwarz inequality. Therefore, by (125)

sup
θ∈Nn,v1,v2∈Vn:∥v1∥=∥v2∥=1

|ν0 {∆(·; θ) [v1] ∆(·; θ) [v2]−∆(·; θ0) [v1] ∆ (·; θ0) [v2]}|

≤ C∗ν0 [U∆,∗] · sup
θ∈Nn

max
{
ρ (θ, θ0) ρ (θ, θ0)

2
}

≤ max

{
K−s/dX

n ,

√
Kn

n

}
· ζn

→ 0,
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where the inequality in the penultimate line follows from the definition of Nn in (70) and the limit
claim in the final line follows from the definition of ζn in (69). Hence, the requirement in Lemma C.9
(i) follows.

Part (ii): define the family of functions

Dn = {∆(·; θ) [v1] ∆(·; θ) [v2] : θ ∈ Nn, v1, v2 ∈ Vn, ∥v1∥ = ∥v2∥ = 1} . (126)

Then, using (125), the fact that covering numbers are dominated by bracketing numbers for Lp-
norms and Theorem 2.7.11 in van der Vaart and Wellner (1996), given any ε

logN (ε,Dn,L1 (νn)) ≤ logN[] (ε,Dn,L1 (νn))

≤ logN

(
ε

C∗,n
,Nn, ρ

)
,

where we define
C∗,n = C∗νn

[
U∆,∗

]
.

Effectively the same arguments as those used to establish (50) in Lemma B.15 show that

logN (ε,Dn,L1 (νn)) ≤ logN

(
ε

C∗,n
,Nn, ρ

)
≤ (dW +Kn) ·max

{
0, log

(
3C∗,nδ∗,n

ε

)}
.

where

δ∗,n = max

{
K−s/dX

n ,

√
Kn

n

}
· ζn

from the definition of Nn in (70). By the Strong Law of Large Numbers, C∗,n
a.s.→ C∗ν0

[
U∆,∗

]
<∞

and by assumption, δ∗,n → 0. By the Continuous Mapping Theorem,

max

{
0, log

(
3C∗,nδ∗,n

ε

)}
a.s.→ 0.

Also by assumption, Kn/n→ 0 and so, also by the Continuous Mapping Theorem,

logN (ε,Dn,L1 (νn))

n
≤ dW +Kn

n
·max

{
0, log

(
3C∗,nδ∗,n

ε

)}
= op(1).

Since ε > 0 was arbitrary, by Theorem 2.4.3 of van der Vaart and Wellner (1996),

sup
θ∈Nn,v1,v2∈Vn:∥v1∥=∥v2∥=1

|µn {∆(·; θ) [v1] ∆(·; θ) [v2]}| = op(1).
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D.4.6 Proof of Lemma C.11

Proof of Lemma C.11. From Equation (88),

Vϕ,n = ∥v∗n∥ , (127)

which is non-decreasing since Vn is a sequence of nested non-decreasing sets and from (78) ∥v∗n∥ can
be defined as a supremum over Vn. Since any monotone and bounded sequence is convergent, we
need only prove then that ∥v∗n∥ is bounded to establish the claim. To that end, combining (81) and
(82), we have

∥v∗n∥
2 = Φ′

nI−1
n Φn,

where Φn is defined in (79) as

Φn =

[ ∫
∂
∂αT1 (α0, b)h0(b)

2db

2
∫
T1 (α0, b)h0(b)ψKn(b) db

]
.

Then, from Assumption C.1 (i), it follows that

∥v∗n∥
2 ≤ c−1

I ∥Φn∥2

= c−1
I

{∥∥∥∥∫ ∂

∂α
T1 (α0, b)h0(b)

2db

∥∥∥∥2
2

+

∥∥∥∥∫ T1 (α0, b)h0(b)ψKn(b) db

∥∥∥∥2
2

}

By Assumption 4.7, the component of Φn corresponding to α is finite, i.e.∥∥∥∥∫ ∂

∂α
T1 (α0, b)h0(b)

2db

∥∥∥∥
2

<∞.

Therefore, we need to argue that the following is a bounded sequence:∥∥∥∥∫ T1 (α0, b)h0(b)ψKn(b) db

∥∥∥∥2
2

,

To that end,
∫
T1 (α0, b)h0(b)ψKn(b) db are generalized Fourier coefficients and ψKn are orthonor-

mal. By Bessel’s inequality,∥∥∥∥∫ T1 (α0, b)h0(b)ψKn(b) db

∥∥∥∥2
2

≤
∫ ∫

T1 (α0, b)
2 h0(b)

2db.

By Assumption 4.6, and dominated convergence, T1 (α0, b) is continuous in b and hence compactness
of B implies that the right hand side of the above inequality is finite. Thus, ∥v∗n∥ is a bounded
sequence.
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D.5 Proofs of Lemmas required for Theorem C.2

D.5.1 Proof of Lemma C.13

Proof of Lemma C.13. From Lemma C.2, T∗ is a Donsker class with a square integrable envelope.
Any Donsker class is also Glivenko-Cantelli (by Slutsky’s Theorem). By Lemma 2.10.14 of van der
Vaart and Wellner (1996), the class T 2

∗ =
{
t2∗ : t ∈ T∗

}
is also Glivenko-Cantelli. Hence, we have

both

sup
t∗∈T∗

|µn (t∗)|
p→ 0, and sup

t∗∈T∗

∣∣µn (t2∗)∣∣ p→ 0. (128)

Therefore,

V̂2,n = νn

[
T̂ 2
2,n

]
− νn

[
T̂2,n

]2
= ν0

[
T̂ 2
2,n

]
+ µn

[
T̂ 2
2,n

]
−
{
ν0

[
T̂2,n

]
+ µn

[
T̂2,n

]}2

= ν0

[
T̂ 2
2,n

]
+ op(1)−

{
ν0

[
T̂2,n

]
+ op(1)

}2

where the last line follows by (128). Hence,

V̂2,n = ν0
[
T 2
2,0

]
+ ν0

[
T̂ 2
2,n − T 2

2,0

]
+ op(1)−

{
ν0 [T2,0] + ν0

[
T̂2,n − T2,0

]
+ op(1)

}2
. (129)

Thus, we are done if we can show that

ν0

[
T̂2,n − T2,0

]
= op(1), (130)

ν0

[
T̂ 2
2,n − T 2

2,0

]
= op(1). (131)

For (130), by Jensen’s inequality,

∣∣∣ν0 [T̂2,n − T2,0

]∣∣∣ ≤√ν0 [(T̂2,n − T2,0

)2]
= op(1),

where the last equality follows from ρ
(
θ̂n, θ0

)
p→ 0 and (65) in Lemma C.3. For (131), by the

Cauchy-Schwarz inequality,∣∣∣ν0 [T̂ 2
2,n − T 2

2,0

]∣∣∣ = ∣∣∣ν0 [(T̂2,n + T2,0

)(
T̂2,n − T2,0

)]∣∣∣
≤
(
ν0

[(
T̂2,n + T2,0

)2])1/2(
ν0

[(
T̂2,n − T2,0

)2])1/2

≤
(
2ν0

[(
T
∗
)2])1/2(

ν0

[(
T̂2,n − T2,0

)2])1/2

.
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where T ∗ is the square-integrable envelope function for T∗ from Lemma C.2. Again, combining
ρ
(
θ̂n, θ0

)
p→ 0 and (65) in Lemma C.3,

∣∣∣ν0 [T̂ 2
2,n − T 2

2,0

]∣∣∣ ≤ op(1).

Therefore, from (129), we get by the Continuous Mapping Theorem that

V̂2,n = ν0
[
T 2
2,0

]
+ op(1)− {ν0 [T2,0] + op(1)}2 = ν0

[
T 2
2,0

]
− ν0 [T2,0]

2 + op(1) = V2,0 + op(1).

D.5.2 Proof of Lemma C.14

Proof of Lemma C.14. From (99),

Ĉn

∥v̂∗n∥
=

1
n

∑n
i=1∆

(
Yi,Wi, Xi; θ̂n

)
[v̂∗n] T̃2,n (Wi, Xi)

∥v̂∗n∥

=
1

n

n∑
i=1

∆
(
Yi,Wi, Xi; θ̂n

)[ v̂∗n
∥v̂∗n∥

]
T̃2,n (Wi, Xi)

= νn

[
∆̂n · T̂2,n

]
− νn

[
∆̂n

]
· νn

[
T̂2,n

]
,

where
∆̂n (y, w, x) = ∆

(
y, w, x; θ̂n

)[ v̂∗n
∥v̂∗n∥

]
.

Thus,
Ĉn

∥v̂∗n∥
= ν0

[
∆̂n · T̂2,n

]
+ µn

[
∆̂n · T̂2,n

]
− νn

[
∆̂n

]
· νn

[
T̂2,n

]
. (132)

We are hence tasked with showing the following:

ν0

[
∆̂n · T̂2,n

]
= op(1), (133)

νn

[
∆̂n

]
· νn

[
T̂2,n

]
= op(1), (134)

µn

[
∆̂n · T̂2,n

]
= op(1). (135)

We start with (133). Set

∆̂0,n (y, w, x) = ∆ (y, w, x; θ0)

[
v̂∗n

∥v̂∗n∥

]
.

and write
ν0

[
∆̂n · T̂2,n

]
= ν0

[(
∆̂n − ∆̂0,n

)
· T̂2,n

]
+ ν0

[
∆̂0,n · T̂2,n

]
.

By (101) of Lemma C.12, for any function T (w, x) that only depends on (w, x), ν0
[
∆̂0,n · T

]
= 0.
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Hence, since T̂2,n only takes (w, x) as arguments, ν0
[
∆̂0,n · T̂2,n

]
so that

∣∣∣ν0 [∆̂n · T̂2,n
]∣∣∣ = ∣∣∣ν0 [(∆̂n − ∆̂0,n

)
· T̂2,n

]∣∣∣ ≤ ν0

[(
∆̂n − ∆̂0,n

)2]1/2
ν0

[
T̂ 2
2,n

]1/2
,

where the inequality follows by Cauchy-Schwarz. Using the fact that
∣∣∣T̂2,n∣∣∣ ≤ T

∗,

∣∣∣ν0 [∆̂n · T̂2,n
]∣∣∣ ≤ ν0

[(
T
∗
)2]1/2

ν0

[(
∆̂n − ∆̂0,n

)2]1/2
.

By (138) in Lemma D.4,∣∣∣ν0 [∆̂n · T̂2,n
]∣∣∣

≤ 2ν0

[(
T
∗
)2]1/2

ν0

[
max

{
U∆,1, U∆,2

}2]1/2×
×

max
{∥∥v̂∗n,α∥∥2 , ∥∥∥v̂∗n,h∥∥∥2}

∥v̂∗n∥
· ρ
(
θ̂n, θ0

)
+

max
{∥∥v̂∗n,α∥∥32 , ∥vh∥32}

∥v̂∗n∥
3 ρ

(
θ̂n, θ0

)2
≤ C∆max

{
ρ
(
θ̂n, θ0

)
, ρ
(
θ̂n, θ0

)2}
for a constant C∆ <∞, since both U∆,1 and U∆,2 are square integrable under Assumption 4.2. By
Theorem 4.1, ρ

(
θ̂n, θ0

)
= op(1) and so, ν0

[
∆̂n · T̂2,n

]
= op(1), i.e. (133) holds.

For (134), first write ∣∣∣νn [T̂2,n]∣∣∣ = ∣∣∣ν0 [T̂2,n]+ µn

[
T̂2,n

]∣∣∣
≤
∣∣∣ν0 [T̂2,n]∣∣∣+ ∣∣∣µn [T̂2,n]∣∣∣

≤
∣∣∣ν0 [T ∗

]∣∣∣+ ∣∣∣µn [T̂2,n]∣∣∣
≤ ν0

[(
T
∗
)2]1/2

+ sup
t∗∈T∗

|µn [t∗]|

= ν0

[(
T
∗
)2]1/2

+ op(1)

The last negligibility claim is due to (128) and follows from T∗ being a G0-Donsker class. Therefore,
νn

[
T̂2,n

]
= Op(1) and (134) follows if we show that νn

[
∆̂n

]
= op(1). To that end, write

νn

[
∆̂n

]
= νn

[
∆̂0,n

]
+ νn

[
∆̂n − ∆̂0,n

]
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First, by (138) in Lemma D.4,

∣∣∣νn [∆̂n − ∆̂0,n

]∣∣∣ ≤νn [(∆̂n − ∆̂0,n

)2]1/2
≤ 2νn

[
max

{
U∆,1, U∆,2

}2]1/2×
×

max
{∥∥v̂∗n,α∥∥2 , ∥∥∥v̂∗n,h∥∥∥2}

∥v̂∗n∥
· ρ
(
θ̂n, θ0

)
+

max
{∥∥v̂∗n,α∥∥32 , ∥vh∥32}

∥v̂∗n∥
3 ρ

(
θ̂n, θ0

)2
≤ (C∆,2 + op(1))max

{
ρ
(
θ̂n, θ0

)
, ρ
(
θ̂n, θ0

)2}

for a constant C∆,2 by the Strong Law of Large Numbers. By Theorem 4.1, ρ
(
θ̂n, θ0

)
= op(1) and

so νn

[
∆̂n − ∆̂0,n

]
= op(1). Next, for each n, we again have ν0

[
∆̂0,n

]
= 0 by Lemma C.12 and

by Lemma D.3, ∆̂0,n(·) are uniformly ν0-integrable. By the Law of Large Numbers under uniform
integrability (see for instance Theorem A.7.3 in Bickel et al. (1998)), we have

νn

[
∆̂0,n

]
= µn

[
∆̂0,n

]
p→ 0.

And so, νn
[
∆̂n

]
= νn

[
∆̂0,n

]
+ νn

[
∆̂n − ∆̂0,n

]
= op(1) + op(1) = op(1), and so, (134) holds.

Finally (135) follows from the previous arguments and Theorem 2.10.5 in van der Vaart and
Wellner (2023) (an element-wise product of Glivenko-Cantelli classes with integrable envelopes is
itself Glivenko-Cantelli).

D.6 Envelopes for score functions and their differences

In what follows, let z = (y, w, x) and θ = (α, h) for brevity. Let

∆̃α(z; θ) =

∫
∂

∂α
κ(z;α, b)h(b)2 db,

∆̃h(z; θ)[vh] =

∫
κ(z;α, b)h(b)vh(b)db,

(136)

so that (by (72)) ∆ can be written as

∆(z; θ) [v] =
∆̃α (z; θ)

′ vα + 2∆̃h(z; θ) [vh]

P (z; θ)
.

Now, we provide results concerning envelope functions for the pathwise derivative ∆. All proofs of
lemmas stated here are given in Appendix D.7.

Lemma D.3. Given any θ ∈ Θ and v ∈ V,

|∆(z; θ)[v]| ≤ U∆(z) ·max {∥vα∥2 , ∥vh∥2} . (137)
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where
U∆(z) = exp

(
ℓ
∗
(z)
)
· [Uα(z) + 2] ,

with the envelope function Uα given in Lemma D.5 and ℓ
∗ and UP are defined in Lemmas B.7

and B.8 respectively.

Lemma D.4. Given any θ1, θ2 ∈ Θ and v ∈ V,

|∆(z; θ1) [v]−∆(z; θ2) [v]| ≤ U∆,1(z) ·max {∥vα∥2 , ∥vh∥2} · ρ (θ1, θ2)

+ U∆,2(z) ·max
{
∥vα∥32 , ∥vh∥

3
2

}
ρ (θ1, θ2)

2
(138)

where

U∆,1(z) = Ũα,1(z) + 2Ũh,1(z),

U∆,2(z) = Ũα,2(z) + 2Ũh,2(z),

Ũα,1(z) = exp
(
ℓ
∗
(z)
)
· Uα(z) + exp

(
2ℓ

∗
(z)
)
· Uα(z) · UP (z),

Ũα,2(z) = exp
(
2ℓ

∗
(z)
)
·max

{
1

2
, exp

(
ℓ
∗
(z)
)
· Uα(z)

}
·
[
Uα(z)

2 + UP (z)
2
]
,

Ũh,1(z) = exp
(
ℓ
∗
(z)
)
· Uh(z) + exp

(
2ℓ

∗
(z)
)
· UP (z),

Ũh,2(z) = exp
(
2ℓ

∗
(z)
)
·max

{
1

2
, exp

(
ℓ
∗
(z)
)}

·
[
Uh(z)

2 + UP (z)
2
]
.

and the envelope functions Uα, Uα, Uh, ℓ
∗ and UP are defined in in Lemmas D.5, D.6, D.8, B.7

and B.8 respectively.

The bounds in this previous two lemmas are a combination of the following.

Lemma D.5. For any θ = (α, h) ∈ Θ ∥∥∥∆̃α(z; θ)
∥∥∥
2
≤ Uα(z). (139)

where
Uα(y, w, x) = 2(J + 1) max

j=0,...,J

{
∥wj∥2

}
.

Lemma D.6. Given θ1, θ2 ∈ Θ,∥∥∥∆̃α (z; θ1)− ∆̃α (z; θ2)
∥∥∥
2
≤ Uα(z) · ρ (θ1, θ2) . (140)

where
Uα(y, w, x) =

[
8(J + 1)2 max

j=0,...,J

{
∥wj∥22

}
+ 4(J + 1) max

j=0,...,J

{
∥wj∥2

}]
.

Lemma D.7. Given θ ∈ Θ and vh ∈ L2,

∣∣∣∆̃h(z; θ)[vh]
∣∣∣ ≤ (∫ vh(b)

2db

)1/2

.
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Lemma D.8. Given θ1, θ2 ∈ Θ with θj = (αj , hj), and vh ∈ L2,

∣∣∣∆̃h (z; θ1) [vh]− ∆̃h (z; θ2) [vh]
∣∣∣ ≤ Uh(z) ·

(∫
vh(b)

2db

)1/2

· ρ (θ1, θ2) . (141)

where
Uh(y, w, x) = max

{
1, 2(J + 1) max

j=0,...,J

{
∥wj∥2

}}
.

D.7 Proofs of envelopes for score functions and their differences

Proof of Lemma D.3. Use (72) and (136) to write

|∆(z; θ)[v]| =

∣∣∣∆̃α(z; θ)
′vα + 2∆̃h(z; θ)[vh]

∣∣∣
P (z; θ)

≤ exp
(
ℓ
∗
(z)
) ∣∣∣∆̃α(z; θ)

′vα + 2∆̃h(z; θ)[vh]
∣∣∣

≤ exp
(
ℓ
∗
(z)
){∣∣∣∆̃α(z; θ)

′vα

∣∣∣+ 2
∣∣∣∆̃h(z; θ)[vh]

∣∣∣}
≤ exp

(
ℓ
∗
(z)
){∥∥∥∆̃α(z; θ)

∥∥∥
2
∥vα∥2 + 2

∣∣∣∆̃h(z; θ)[vh]
∣∣∣}

≤ exp
(
ℓ
∗
(z)
)
{Uα(z) ∥vα∥2 + 2 ∥vh∥2}

≤ exp
(
ℓ
∗
(z)
)
[Uα(z) + 2] ·max {∥vα∥2 , ∥vh∥2} .

The penultimate inequality follows from Lemmas D.5 and D.7. Hence, (137) follows.

Proof of Lemma D.4. Using (72) and (136),

∆(z; θ1) [v]−∆(z; θ2) [v]

=

(
∆̃α (z; θ1)

′ vα
P (z; θ1)

− ∆̃α (z; θ2)
′ vα

P (z; θ2)

)
+ 2

(
∆̃h (z; θ1) [vh]

P (z; θ1)
− ∆̃h (z; θ2) [vh]

P (z; θ2)

)
.

By the triangle inequality,

|∆(z; θ1) [v]−∆(z; θ2) [v]|

≤

∣∣∣∣∣∆̃α (z; θ1)
′ vα

P (z; θ1)
− ∆̃α (z; θ2)

′ vα
P (z; θ2)

∣∣∣∣∣+ 2

∣∣∣∣∣∆̃h (z; θ1) [vh]

P (z; θ1)
− ∆̃h (z; θ2) [vh]

P (z; θ2)

∣∣∣∣∣ . (142)

By (161) in Lemma F.5,∣∣∣∣a1b1 − a2
b2

∣∣∣∣ ≤ 1

b2
|a1 − a2|+

|a2|
b22

|b1 − b2|

+
1

min {b1, b2}2
·max

{
1

2
,

∣∣∣∣a2b2
∣∣∣∣} [|a1 − a2|2 + |b1 − b2|2

]
.
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Applying the above to the first summand in (142)∣∣∣∣∣∆̃α (z; θ1)
′ vα

P (z; θ1)
− ∆̃α (z; θ2)

′ vα
P (z; θ2)

∣∣∣∣∣
≤ 1

P (z; θ2)

∣∣∣∣[∆̃α (z; θ1)− ∆̃α (z; θ2)
]′
vα

∣∣∣∣
+

∣∣∣∆̃α (z; θ2)
′ vα

∣∣∣
P (z; θ2)

2 |P (z; θ1)− P (z; θ2)|

+
1

minj=1,2 {P (z; θj)}2
·max

{
1

2
,

∣∣∣∣∣∆̃α (z; θ2)
′ vα

P (z; θ2)

∣∣∣∣∣
}
×

×

{∣∣∣∣[∆̃α (z; θ1)− ∆̃α (z; θ2)
]′
vα

∣∣∣∣2 + |P (z; θ1)− P (z; θ2)|2
}

≤ 1

P (z; θ2)

∥∥∥∆̃α (z; θ1)− ∆̃α (z; θ2)
∥∥∥
2
∥vα∥2

+

∥∥∥∆̃α (z; θ2)
∥∥∥
2
∥vα∥2

P (z; θ2)
2 |P (z; θ1)− P (z; θ2)|

+
1

minj=1,2 {P (z; θj)}2
·max

1

2
,

∥∥∥∆̃α (z; θ2)
∥∥∥
2
∥vα∥2

P (z; θ2)

×

×
{∥∥∥∆̃α (z; θ1)− ∆̃α (z; θ2)

∥∥∥2
2
∥vα∥22 + |P (z; θ1)− P (z; θ2)|2

}
.

Using the envelope ℓ∗ defined in (31) of Lemma B.7,∣∣∣∣∣∆̃α (z; θ1)
′ vα

P (z; θ1)
− ∆̃α (z; θ2)

′ vα
P (z; θ2)

∣∣∣∣∣
≤ exp

(
ℓ
∗
(z)
)∥∥∥∆̃α (z; θ1)− ∆̃α (z; θ2)

∥∥∥
2
∥vα∥2

+ exp
(
2ℓ

∗
(z)
)∥∥∥∆̃α (z; θ2)

∥∥∥
2
∥vα∥2 |P (z; θ1)− P (z; θ2)|

+ exp
(
2ℓ

∗
(z)
)
·max

{
1

2
, exp

(
ℓ
∗
(z)
)∥∥∥∆̃α (z; θ2)

∥∥∥
2
∥vα∥2

}
×

×
{∥∥∥∆̃α (z; θ1)− ∆̃α (z; θ2)

∥∥∥2
2
∥vα∥22 + |P (z; θ1)− P (z; θ2)|2

}
.

Using the definitions of the envelope functions Uα, Uα and UP in Lemma D.5, Lemma D.6 and
Lemma B.8 respectively, we get∣∣∣∣∣∆̃α (z; θ1)

′ vα
P (z; θ1)

− ∆̃α (z; θ2)
′ vα

P (z; θ2)

∣∣∣∣∣
≤ Ũα,1(z) · ∥vα∥2 · ρ (θ1, θ2) + Ũα,2(z) ·max

{
1, ∥vα∥32

}
· ρ (θ1, θ2)2 .

84



Next, we proceed similarly and apply (161) in Lemma F.5 to the second summand in (142):∣∣∣∣∣∆̃h (z; θ1) [vh]

P (z; θ1)
− ∆̃h (z; θ2) [vh]

P (z; θ2)

∣∣∣∣∣
≤ 1

P (z; θ2)

∣∣∣∆̃h (z; θ1) [vh]− ∆̃h (z; θ2) [vh]
∣∣∣

+

∣∣∣∆̃h (z; θ2) [vh]
∣∣∣

P (z; θ2)
2 |P (z; θ1)− P (z; θ2)|

+
1

minj=1,2 {P (z; θj)}2
·max

{
1

2
,

∣∣∣∣∣∆̃h (z; θ2) [vh]

P (z; θ2)

∣∣∣∣∣
}
×

×
[∣∣∣∆̃h (z; θ1) [vh]− ∆̃h (z; θ2) [vh]

∣∣∣2 + |P (z; θ1)− P (z; θ2)|2
]
.

Using the envelope ℓ∗ defined in (31) of Lemma B.7,∣∣∣∣∣∆̃h (z; θ1) [vh]

P (z; θ1)
− ∆̃h (z; θ2) [vh]

P (z; θ2)

∣∣∣∣∣
≤ exp

(
ℓ
∗
(z)
) ∣∣∣∆̃h (z; θ1) [vh]− ∆̃h (z; θ2) [vh]

∣∣∣
+ exp

(
2ℓ

∗
(z)
)
·
∣∣∣∆̃h (z; θ2) [vh]

∣∣∣ · |P (z; θ1)− P (z; θ2)|

+ exp
(
2ℓ

∗
(z)
)
·max

{
1

2
, exp

(
ℓ
∗
(z)
)
·
∣∣∣∆̃h (z; θ2) [vh]

∣∣∣}×

×
[∣∣∣∆̃h (z; θ1) [vh]− ∆̃h (z; θ2) [vh]

∣∣∣2 + |P (z; θ1)− P (z; θ2)|2
]
.

Using Lemma D.7 and the definitions of the envelope functions Uh and UP in Lemma D.8 and
Lemma B.8 respectively, we get∣∣∣∣∣∆̃h (z; θ1) [vh]

P (z; θ1)
− ∆̃h (z; θ2) [vh]

P (z; θ2)

∣∣∣∣∣
≤ Ũh,1(z) · ∥vh∥2 · ρ (θ1, θ2) + Ũh,2(z) ·max

{
1, ∥vh∥32

}
· ρ (θ1, θ2)2 .

And so, (138) follows from combining Combining (D.7) and (D.7) with (142).

Proof of Lemma D.5. Lemma F.1 derives the following in (151):

∂

∂α
κ(y, w, x;α, b) = κ(y, w, x;α, b) ·

J∑
j=0

(wy − wj)κ(j, w, x;α, b).
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As a result, the triangle inequality and κ(·) ∈ (0, 1) provide the following norm bound∥∥∥∥ ∂∂ακ(y, w, x;α, b)
∥∥∥∥
2

≤ 2(J + 1) max
j=0,...,J

{
∥wj∥2

}
. (143)

From (136) ∥∥∥∆̃α(z; θ)
∥∥∥
2
=

∥∥∥∥∫ ∂

∂α
κ(z;α, b)h(b)2 db

∥∥∥∥
2

≤
∫ ∥∥∥∥ ∂∂ακ(z;α, b)

∥∥∥∥
2

h(b)2 db

≤ 2(J + 1) max
j=0,...,J

{
∥wj∥2

}∫
h(b)2 db,

and so (139) follows from
∫
h2 = 1.

Proof of Lemma D.6. Let θj = (αj , hj) for j ∈ {1, 2}. The difference can be decomposed

∆̃α (z; θ1)− ∆̃α (z; θ2)

=

∫
∂

∂α
κ (z;α1, b)h1(b)

2 db−
∫

∂

∂α
κ (z;α2, b)h2(b)

2 db

=

∫ [
∂

∂α
κ (z;α1, b)−

∂

∂α
κ (z;α2, b)

]
h1(b)

2 db

+

∫
∂

∂α
κ (z;α2, b)

(
h1(b)

2 − h2(b)
2
)
db

=

[∫
∂2

∂α∂α′κ (z; α̃, b)h1(b)
2 db

]
(α1 − α2)

+

∫
∂

∂α
κ (z;α2, b) (h1(b) + h2(b)) (h1(b)− h2(b)) db

for a midpoint α̃ = α̃(z, b) between α1 and α2. Using the triangle inequality,∥∥∥∆̃α (z; θ1)− ∆̃α (z; θ2)
∥∥∥
2

≤
∥∥∥∥∫ ∂2

∂α∂α′κ (z; α̃, b)h1(b)
2 db (α1 − α2)

∥∥∥∥
2

+

∥∥∥∥∫ ∂

∂α
κ (z;α2, b) (h1(b) + h2(b)) (h1(b)− h2(b)) db

∥∥∥∥
2

≤

[∫ ∥∥∥∥ ∂2

∂α∂α′κ (z; α̃, b)

∥∥∥∥
op

h1(b)
2 db

]
∥α1 − α2∥2

+

(∫ ∥∥∥∥ ∂∂ακ (z;α2, b)

∥∥∥∥2
2

(h1(b) + h2(b))
2 db

)1/2(∫
(h1(b)− h2(b))

2 db

)1/2

86



where ∥ · ∥op denotes the operator (or spectral) norm of a matrix. As in (143),∥∥∥∥ ∂∂ακ(z;α, b)
∥∥∥∥
2

≤ 2(J + 1) max
j=0,...,J

{
∥wj∥2

}
.

Furthermore, the second derivative is

∂

∂α∂α′κ(z;α, b) =
∂

∂α
κ(z;α, b) ·

J∑
j=0

(wy − wj)
′ κ(j, w, x;α, b)

+ κ(z;α, b) ·
J∑

j=0

(wy − wj)
∂

∂α′κ(z;α, b).

(144)

It can be shown that given any two vectors v1, v2, the operator norm of their outer product is
bounded by the product of their Euclidean norms, i.e. ∥v1v′2∥op ≤ ∥v1∥2 ∥v2∥2. Repeated application
of this to (144) gives ∥∥∥∥ ∂

∂α∂α′κ(y, w, x;α, b)

∥∥∥∥
op

≤ 8(J + 1)2 max
j=0,...,J

{
∥wj∥22

}
. (145)

Both norm bounds (143) and (145) do not depend on y, x, α, b. Thus,∥∥∥∆̃α (z; θ1)− ∆̃α (z; θ2)
∥∥∥
2

≤

[∫ ∥∥∥∥ ∂2

∂α∂α′κ (z; α̃, b)

∥∥∥∥
op

h1(b)
2 db

]
∥α1 − α2∥2

+

(∫ ∥∥∥∥ ∂∂ακ (z;α2, b)

∥∥∥∥2
2

(h1(b) + h2(b))
2 db

)1/2(∫
(h1(b)− h2(b))

2 db

)1/2

+

(∫ ∥∥∥∥ ∂∂ακ (z;α2, b)

∥∥∥∥2
2

(h1(b) + h2(b))
2 db

)1/2

ρL2 (h1, h2)

≤ 8(J + 1)2 max
j=0,...,J

{
∥wj∥22

}
· ∥α1 − α2∥2

+ 2(J + 1) max
j=0,...,J

{
∥wj∥2

}(∫
(h1(b) + h2(b))

2 db

)1/2

ρL2 (h1, h2)

5 Using the inequality
∫
(h1 + h2)

2 ≤ 4 due to Lemma B.6 and the fact that both ∥α1 − α2∥2 ≤
ρ (θ1, θ2) and ρL2 (h1, h2) ≤ ρ (θ1, θ2), we get∥∥∥∆̃α (z; θ1)− ∆̃α (z; θ2)

∥∥∥
2

≤
[
8(J + 1)2 max

j=0,...,J

{
∥wj∥22

}
+ 4(J + 1) max

j=0,...,J

{
∥wj∥2

}]
ρ (θ1, θ2) ,

which is exactly (140).
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Proof of Lemma D.7. By κ(·) ∈ (0, 1) and
∫
h2 = 1,

∣∣∣∆̃h(z; θ)[vh]
∣∣∣ = ∣∣∣∣∫ κ(z;α, b)h(b)vh(b)db

∣∣∣∣ ≤ ∫ |h(b)| |vh(b)| db

≤
(∫

h(b)2db

)1/2(∫
vh(b)

2db

)1/2

=

(∫
vh(b)

2db

)1/2

.

Proof of Lemma D.8. Decompose the difference as

∆̃h (z; θ1) [vh]− ∆̃h (z; θ2) [vh]

=

∫
κ (z;α1, b)h1(b)vh(b)db−

∫
κ (z;α2, b)h2(b)vh(b)db

=

∫
[κ (z;α1, b)− κ (z;α2, b)]h1(b)vh(b)db

+

∫
κ (z;α2, b) [h1(b)− h2(b)] vh(b)db

=

[∫
∂

∂α′κ (z; α̃1, b)h1(b)vh(b)db

]
(α1 − α2)

+

∫
κ (z;α2, b) [h1(b)− h2(b)] vh(b)db

By the triangle and Cauchy-Schwarz inequalities as well as the fact that κ(·) ∈ (0, 1),∣∣∣∆̃h (z; θ1) [vh]− ∆̃h (z; θ2) [vh]
∣∣∣

≤
[∫ ∥∥∥∥ ∂∂ακ (z; α̃1, b)

∥∥∥∥
2

|h1(b)| |vh(b)| db
]
∥α1 − α2∥2

+

(∫
(h1(b)− h2(b))

2 db

)1/2(∫
vh(b)

2db

)1/2

≤ 2(J + 1) max
j=0,...,J

{
∥wj∥2

}(∫
vh(b)

2db

)1/2

∥α1 − α2∥2

+

(∫
vh(b)

2db

)1/2

· ρL2 (h1, h2) .

In the above, the last inequality follows from (143),
∫
h21 = 1 and the Cauchy Schwarz inequality.

Next, using the fact that both ∥α1 − α2∥2 ≤ ρ (θ1, θ2) and ρL2 (h1, h2) ≤ ρ (θ1, θ2)∣∣∣∆̃h (z; θ1) [vh]− ∆̃h (z; θ2) [vh]
∣∣∣

≤ max

{
1, 2(J + 1) max

j=0,...,J

{
∥wj∥2

}}(∫
vh(b)

2db

)1/2

· ρ (θ1, θ2) ,

which is exactly (141).
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E Proofs of Theorems 4.4 and 4.5

Proof of Theorem 4.4. Let {hj,l : j = 1, 2, l = 1, . . . , dX} be a finite set of univariate root-densities,
i.e.

∫
hj,l (bl)

2 dbl = 1. Without loss of generality, assume also that hj,l ≥ 0 everywhere. Denote
the jth product root-density by hj =

∏dX
l=1 hj,l. Then, by Lemma 3.3.10 (i) in Reiss (1989, p. 100)

ρL2 (h1, h2)
2 =

√∫
(h1(b)− h2(b))

2 db ≤

√√√√ dX∑
l=1

∫
(h1,l (bl)− h2,l (bl))

2 dbl

=

√√√√ dX∑
l=1

ρL2 (h1,l, h2,l)
2.

In finite dimensions, the following holds: for any real al with l = 1, . . . , dX ,√√√√ dX∑
l=1

|al|2 ≤
dX∑
l=1

|al| .

Combining with the previous display,

ρL2 (h1, h2) ≤
dX∑
l=1

ρL2 (h1,l, h2,l) . (146)

By the univariate counterpart of Assumption 4.4 (ii), for each l = 1, . . . , dX , there is γ̃0,n,l such
that setting h̃0,n,l = γ′0,n,lψKn,l, ρL2

(
h̃0,n,l, h0,l

)
= O(K−s

n ). As before, we can set γ̃0,n,l equal to
the L2 projection coefficients of h0,l onto the span of ψKn,l and

γ0,n,l = γ̃0,n,l/ ∥γ̃0,n,l∥2 ,

h0,n,l = γ′0,n,lψKn,l.

Then, γ′0,n,lγ0,n,l = 1 and
∫
h0,n,l(b)

2 db = 1. By Lemma B.14, ρL2 (h0,n,l, h0,l) = O(K−s
n ) (the

approximation rate is unchanged by normalization). Let

h0,n =

dX∏
l=1

h0,n,l.

By (146),

ρL2 (h0,n, h0) ≤
dX∑
l=1

ρL2 (h1,l, h2,l) = O
(
K−s

n

)
This characterizes the “bias” part of the convergence rate.

Repeat the remainder of the proof of Theorem 4.2 to see that the “variance” part is of order
Op (Kn/

√
n).
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Proof of Theorem 4.5. Given Theorem 4.4, let the sequence ζn ≥ 1 in (69) now be non-decreasing,
slowly growing sequence and satisfy

ζn ↗ ∞,

ζ2n ·max

{√
n ·K−2s

n ,
Kn√
n

}
→ 0.

The definition of “rate-local” spaces (70) is unchanged up to this new definition of ζn, i.e.

N0,n =

{
θ ∈ Θ : ρ (θ, θ0) ≤ max

{
K−s/dX

n ,

√
Kn

n

}
· ζn.

}
,

Nn = N0,n ∩ΘKn .

Repeat the proof of Theorem 4.3 with these new definitions.

F Auxiliary Results

F.1 Proofs of envelope functions for the log-likelihood and choice probabilities

F.1.1 Proof of Lemma B.7

Proof of Lemma B.7. Lemma F.3 below shows that for any α and any h : B → R with
∫
h(b)2 db =

1, the following bound holds

| logP (y, w, x;α, h)| ≤ log(J + 1) + 2

 J∑
j=0

∥wj∥2

 · ∥α∥2

+ 2

 J∑
j=0

∥xj∥2

 ·
∫

∥b∥2h(b)2db.

Since A ⊆ RdW and B ⊆ RdX are compact sets and
∫
h2 = 1, (32) follows.

F.1.2 Proof of Lemma B.8

Proof of Lemma B.8. Assume without loss of generality throughout that h1, h2 ≥ 0 everywhere.

|P (y, w, x;α1, h1)− P (y, w, x;α2, h2)|

=

∣∣∣∣∫ κ (y, w, x;α1, b)h1(b)
2db−

∫
κ(y, w, x;α2, b)h2(b)

2db

∣∣∣∣
=

∣∣∣∣∫ (κ (y, w, x;α1, b)− κ (y, w, x;α2, b))h1(b)
2db+

∫
κ (y, w, x;α2, b)

(
h1(b)

2 − h2(b)
2
)
db

∣∣∣∣
≤
∣∣∣∣∫ (κ (y, w, x;α1, b)− κ (y, w, x;α2, b))h1(b)

2db

∣∣∣∣+ ∣∣∣∣∫ κ (y, w, x;α2, b)
(
h1(b)

2 − h2(b)
2
)
db

∣∣∣∣
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and so,

|P (y, w, x;α1, h1)− P (y, w, x;α2, h2)| ≤
∫

|κ (y, w, x;α1, b)− κ (y, w, x;α2, b)|h1(b)2db

+

∫
κ (y, w, x;α2, b)

∣∣h1(b)2 − h2(b)
2
∣∣ db. (147)

Applying mean value theorem to the kernel difference in the first component, there is a midpoint
α̃ = α̃ (y, w, x, b;α1, α2) between α1 and α2 such that

κ(y, w, x;α1, b)− κ (y, w, x;α2, b) = κ (y, w, x; α̃, b)

 J∑
j=0

(wy − wj)κ (j, w, x; α̃, b)

′

(α1 − α2) ,

where we have used the expression for ∂κ/∂α in (151) from Lemma F.1 below. Thus,

|κ(y, w, x;α1, b)− κ (y, w, x;α2, b)| ≤ 2

 J∑
j=0

∥wj∥2

 ∥α1 − α2∥2 .

Hence, the first component in (147) can be bounded by

∫
|κ(y, w, x;α1, b)− κ (y, w, x;α2, b)|h1(b)2db ≤

∫ 2 J∑
j=0

∥wj∥2

 ∥α1 − α2∥2

h1(b)
2db

and since
∫
h(b)2db = 1,

∫
|κ(y, w, x;α1, b)− κ (y, w, x;α2, b)|h1(b)2db ≤ 2

 J∑
j=1

∥wj∥2

 ∥α1 − α2∥2 . (148)

For the second component of (147),
∫
κ (y, w, x;α2, b)

∣∣h1(b)2 − h2(b)
2
∣∣db, note that∫

κ (y, w, x;α2, b)
∣∣h1(b)2 − h2(b)

2
∣∣ db = ∫

κ (y, w, x;α2, b) (h1(b) + h2(b)) |h1(b)− h2(b)|db

(Cauchy-Schwarz) ≤
(∫

κ (y, w, x;α2, b)
2 (h1(b) + h2(b))

2 db

) 1
2

×
(∫

(h1(b)− h2(b))
2 db

) 1
2

(by 0 ≤ κ(·; ·) ≤ 1) ≤
(∫

(h1(b) + h2(b))
2 db

) 1
2

× ρL2 (h1, h2)

(by by Lemma B.6) ≤
(
2

∫ (
h1(b)

2 + h2(b)
2
)
db

) 1
2

× ρL2 (h1, h2) .
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And so, since
∫
hj(b)

2 db = 1 for each j = 1, 2,∫
κ (y, w, x;α2, b)

∣∣h1(b)2 − h2(b)
2
∣∣db ≤ 2 · ρL2 (h1, h2) . (149)

Combining (148) and (149) with (147),

|P (y, w, x;α1, h1)− P (y, w, x;α2, h2)|

≤ 2

 J∑
j=0

∥wj∥2

 ∥α1 − α2∥2 + 2ρL2 (h1, h2)

≤ 2max

1,

J∑
j=0

∥wj∥2

 {∥α1 − α2∥2 + ρL2 (|h1| , |h2|)} .

(33) follows from the above display and the inequality: u+v ≤
√
2 ·

√
u2 + v2 for any u, v ≥ 0. This

completes the proof.

F.1.3 Proof of Lemma B.9

Proof of Lemma B.9. Write

logP (y, w, x; θ1)− logP (y, w, x; θ2) = log

(
1 +

P (y, w, x; θ1)

P (y, w, x; θ2)
− 1

)
.

By u/(1 + u) ≤ log(1 + u) ≤ u for u > −1, applied with u = [P (y, w, x; θ1) /P (y, w, x; θ2)]− 1,

|logP (y, w, x; θ1)− logP (y, w, x; θ2)|

≤ 1

minj=1,2 {P (y, w, x; θj)}
|P (y, w, x; θ1)− P (y, w, x; θ2)| .

(35) and (36) now follow from Lemma B.7 and Lemma B.8.

F.1.4 Additional results required for envelope construction

Lemma F.1 (Derivatives of kernel). Let

κ(y, w, x;α, b) =
exp

(
w′
yα+ x′yb

)
∑J

j=0 exp
(
w′
jα+ x′jb

) . (150)
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Then,

∂

∂α
κ(y, w, x;α, b) = κ(y, w, x;α, b) ·

J∑
j=0

(wy − wj)κ(j, w, x;α, b), (151)

∂

∂b
κ(y, w, x;α, b) = κ(y, w, x;α, b) ·

J∑
j=0

(xy − xj)κ(j, w, x;α, b). (152)

Therefore,

∂

∂α
log κ(y, w, x;α, b) =

J∑
j=0

(wy − wj)κ(j, w, x;α, b), (153)

∂

∂b
log κ(y, w, x;α, b) =

J∑
j=0

(xy − xj)κ(j, w, x;α, b). (154)

Proof of Lemma F.1. We can stack z′j =
(
w′
j , x

′
j

)
and ζ ′ = (α′, b′) so that

κ(y, w, x;α, b) = κ(y, z; ζ) =
exp

(
z′yζ
)

∑J
j=0 exp

(
z′jζ
) .

Combine the quotient rule and chain rule to get

∂

∂ζ
κ(y, z; ζ) =

(∑J
j=0 exp

(
z′jζ
))

zy exp
(
z′yζ
)
− exp

(
z′yζ
)
·
(∑J

j=0 zj exp
(
z′jζ
))

[∑J
j=0 exp

(
z′jζ
)]2

= κ(y, z; ζ) ·

∑J
j=0 (zy − zj) exp

(
z′jζ
)

∑J
j=0 exp

(
z′jζ
)

= κ(y, z; ζ) ·
J∑

j=0

(zy − zj)κ(j, z; ζ).

This proves both (151) and (152), which imply (153) and (154) respectively by the chain rule.

Lemma F.2. Let κ(·; ·) be defined by (150). For any (y, w, x) and any α ∈ A, b ∈ B,

0 > log κ(y, w, x;α, b) ≥ − log(J + 1)− 2

 J∑
j=1

∥wj∥2

 · ∥α∥2 − 2

 J∑
j=1

∥xj∥2

 · ∥b∥2. (155)

Proof of Lemma F.2. The upper bound follows since 0 < κ(·; ·) < 1 everywhere. For the lower
bound, note that log κ (y, w, x;0dW+dX ) = − log (J + 1). Using the derivatives in (153) and (154),
by the Mean Value Theorem, there is a midpoint ζ̃ = ζ̃(y, w, x;α, b) between (α, b) and 0dW+dX
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such that

log κ (y, w, x;α, b) = − log(J + 1) +

 J∑
j=0

(wy − wj)κ
(
j, w, x; ζ̃

)′

α

+

 J∑
j=0

(xy − xj)κ
(
j, w, x; ζ̃

)′

b.

Note the expressions for the derivative in the mean value expansion follow from in Lemma F.1.
Furthermore, by κ(·; ·) ∈ (0, 1), log κ(·; ·) < 0 so that | log κ(·; ·)| = − log κ(·; ·). Therefore, taking
absolute values and using the triangle inequality

− log κ (y, w, x;α, b) = |log κ (y, w, x;α, b)|

=

∣∣∣∣∣∣∣∣∣
log κ (y, w, x;0dW+dX )

+
(∑J

j=0 (wy − wj)κ
(
j, w, x; ζ̃

))′
α

+
(∑J

j=0 (xy − xj)κ
(
j, w, x; ζ̃

))′
b

∣∣∣∣∣∣∣∣∣
≤ |log κ (y, x,0dW+dX )|+

∣∣∣∣∣∣
 J∑

j=0

(wy − wj)κ
(
j, w, x; ζ̃

)′

α

∣∣∣∣∣∣
+

∣∣∣∣∣∣
 J∑

j=0

(xy − xj)κ
(
j, w, x; ζ̃

)′

b

∣∣∣∣∣∣ .
By the Cauchy-Schwarz inequality and the fact that κ(·; ·) ∈ (0, 1) everywhere,

− log κ (y, w, x;α, b) ≤ log(J + 1) +

∥∥∥∥∥∥
J∑

j=0

(wy − wj)κ
(
j, w, x; ζ̃

)∥∥∥∥∥∥
2

· ∥α∥2

+

∥∥∥∥∥∥
J∑

j=0

(xy − xj)κ
(
j, w, x; ζ̃

)∥∥∥∥∥∥
2

· ∥b∥2

≤ log(J + 1) + 2

∥∥∥∥∥∥
J∑

j=0

wj

∥∥∥∥∥∥
2

· ∥α∥2 + 2

∥∥∥∥∥∥
J∑

j=0

xj

∥∥∥∥∥∥
2

· ∥b∥2

from which the lower bound in (155) follows after multiplication by −1.

Lemma F.3. Let κ(·; ·) be defined by (150). Let (y, w, x) and α ∈ A be given. For any probability
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distribution F over B,∣∣∣∣log ∫ κ(y, w, x;α, b)F (db)

∣∣∣∣
≤ log(J + 1) + 2

 J∑
j=0

∥wj∥2

 · ∥α∥2 + 2

 J∑
j=0

∥xj∥2

 ·
∫

∥b∥2F (db).
(156)

Proof of Lemma F.3. Since κ(y, w, x;α, b) ∈ (0, 1),∫
κ(y, w, x;α, b)F (db) ∈ [0, 1] =⇒ log

∫
κ(y, w, x;α, b)F (db) ≤ 0.

Using concavity of the natural logarithm and applying Jensen’s inequality,∫
log κ(y, w, x;α, b)F (db) ≤ log

∫
κ(y, w, x;α, b)F (db) ≤ 0.

Thus,∣∣∣∣log ∫ κ(y, w, x;α, b)F (db)

∣∣∣∣ ≤ ∣∣∣∣∫ log κ(y, w, x;α, b)F (db)

∣∣∣∣ ≤ ∫ | log κ(y, w, x;α, b)|F (db).

Inequality (156) now follows from integrating (155):∣∣∣∣log ∫ κ(y, w, x;α, b)F (db)

∣∣∣∣ ≤ ∫
| log κ(y, w, x;α, b)|F (db) = −

∫
log κ(y, w, x;α, b)F (db)

≤ log(J + 1) + 2

 J∑
j=0

∥wj∥2

 · ∥α∥2 + 2

 J∑
j=0

∥xj∥2

 ·
∫

∥b∥2F (db).

F.2 Miscellaneous results

Lemma F.4. For c, δ > 0∫ δ

0

√
log(c/ε)dε = δ ·

√
log(c/δ) + c

∫ ∞

√
log(c/δ)

exp
(
−y2

)
dy. (157)

Consequently, ∫ c

0

√
log(c/ε)dε =

c
√
π

2
. (158)

Proof. Conduct the following change of variables:

y =
√
log(c/ε) so that ε = c exp

(
−y2

)
and dε = −2cy exp

(
−y2

)
dy.

The integration bounds are changed as follows: ε = 0 =⇒ y = ∞, and ε = δ =⇒ y = yc,δ where
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for brevity of notation we define
yc,δ =

√
log(c/δ). (159)

By change of variables,

∫ δ

0

√
log(c/ε) dε = c

∫ √
log(c/δ)

∞
y ·
(
−2y exp

(
−y2

))
dy

= c

∫ ∞

yc,δ

y ·
(
2y exp

(
−y2

))
dy

where the last equality follows from the fact that the negative in the integral will simply interchange
the bounds of integration, and yc,δ =

√
log(c/δ) as in (159). Integration by parts gives∫ δ

0

√
log(c/ε) dε = c

[
−y · exp

(
−y2

)]∞
yc,δ

+ c

∫ ∞

yc,δ

exp
(
−y2

)
dy,

= cyc,δ · exp
(
−y2c,δ

)
+ c

∫ ∞

yc,δ

exp
(
−y2

)
dy

where the last equality follows from limy→∞ y · exp
(
−y2

)
= 0 (using L’Hôpital’s rule). Plugging in

the definition of yc,δ from (159) gives (157). To show (158), use (157) with δ = c to write∫ c

0

√
log(c/ε)dε = c

∫ ∞

0
exp

(
−y2

)
dy = c

∫ ∞

0

1√
2
exp

(
−x

2

2

)
dx,

where the last equality follows from the change of variables y = x/
√
2, so that dy = (dx)/

√
2. The

remaining integral is a multiple of
√
π times the integral of the standard normal density over the

non-negative half of the real line. Hence (158) follows since∫ c

0

√
log(c/ε)dε = c

√
π

∫ ∞

0

1√
2π

exp

(
−x

2

2

)
dx =

c
√
π

2
.

Lemma F.5. Let a1, a2 ∈ R and b1, b2 ∈ (0,∞). Then,

a1
b1

− a2
b2

=
1

b2
(a1 − a2)−

a2
b22

(b1 − b2)−
1

b1 · b2

[
(a1 − a2)−

a2
b2

(b1 − b2)

]
(b1 − b2) . (160)

Hence, ∣∣∣∣a1b1 − a2
b2

∣∣∣∣ ≤ 1

b2
|a1 − a2|+

|a2|
b22

|b1 − b2|

+
1

min {b1, b2}2
·max

{
1

2
,

∣∣∣∣a2b2
∣∣∣∣} [|a1 − a2|2 + |b1 − b2|2

]
.

(161)
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Proof of Lemma F.5.

a1
b1

− a2
b2

=
a1 · b2 − a2 · b1

b1 · b2

=
a1 · b2 − a2 · b2 + a2 · b2 − a2 · b1

b1 · b2
=

1

b1
(a1 − a2)−

a2
b1 · b2

(b1 − b2)

=
1

b2
(a1 − a2)−

a2
b22

(b1 − b2) +

(
1

b1
− 1

b2

)[
(a1 − a2)−

a2
b2

(b1 − b2)

]
=

1

b2
(a1 − a2)−

a2
b22

(b1 − b2)−
1

b1 · b2

[
(a1 − a2)−

a2
b2

(b1 − b2)

]
(b1 − b2) ,

where the last line follows from (1/b1) − (1/b2) = − (b1 − b2) / (b1 · b2). The last line is exactly
(160). Then, (161) follows from the triangle inequality, bounding each term in the last summand of
(160) and the inequality u · v ≤

(
u2 + v2

)
/2.
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